September 24, 2021

Report to:

Holly Beggy Hudbay Minerals 5255 E Williams Circle Suite W1065 Tucson, AZ 85711

cc: David Krizek

Project ID:

ACZ Project ID: L68444

Holly Beggy:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on September 13, 2021. This project has been assigned to ACZ's project number, L68444. Please reference this number in all future inquiries.

Bill to:

Rosemont Copper Company

Hudbay Minerals 5255 E Williams Circle

Suite W1065 Tuscon, AZ 85711

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L68444. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after October 24, 2021. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Scott Habermehl has reviewed and approved this report.

S. Havermehl

L68444-2109241335 Page 1 of 59

Project ID:

Sample ID: DI-19 SOUTH

ACZ Sample ID: *L68444-01*

Date Sampled: 09/09/21 14:10

Date Received: 09/13/21

Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Hot Plate Digestion (1312)	M3010A ICP-MS								09/17/21 8:30	mfm
Total Hot Plate Digestion (1312)	M3010A ICP								09/16/21 13:59	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	M6010D ICP	1	0.343		*	mg/L	0.05	0.25	09/17/21 20:29	jlw
Aluminum, total (3050)	M6010D ICP	101	17600		*	mg/Kg	5.05	25.3	09/18/21 0:34	jlw
Antimony (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.002	09/21/21 13:15	bsu
Antimony, total (3050)	M6020B ICP-MS	505	0.368	В	*	mg/Kg	0.202	1.01	09/17/21 14:37	bsu
Arsenic (1312)	M6020B ICP-MS	1	0.00337			mg/L	0.0002	0.001	09/21/21 13:15	bsu
Arsenic, total (3050)	M6020B ICP-MS	505	4.63			mg/Kg	0.101	0.505	09/17/21 14:37	bsu
Cadmium (1312)	M6020B ICP-MS	1	<0.00005	U	*	mg/L	0.00005	0.00025	09/21/21 13:15	bsu
Cadmium, total (3050)	M6020B ICP-MS	505	0.550			mg/Kg	0.0253	0.126	09/17/21 14:37	bsu
Calcium (1312)	M6010D ICP	1	8.90			mg/L	0.1	0.5	09/17/21 20:29	jlw
Calcium, total (3050)	M6010D ICP	101	14100			mg/Kg	10.1	50.5	09/18/21 0:34	jlw
Copper (1312)	M6020B ICP-MS	1	0.0156			mg/L	0.0008	0.002	09/21/21 13:15	bsu
Copper, total (3050)	M6020B ICP-MS	505	284		*	mg/Kg	0.404	1.01	09/17/21 14:37	bsu
Iron (1312)	M6010D ICP	1	0.215		*	mg/L	0.06	0.15	09/17/21 20:29	jlw
Iron, total (3050)	M6010D ICP	101	18400		*	mg/Kg	6.06	15.2	09/18/21 0:34	jlw
Lead (1312)	M6020B ICP-MS	1	0.00030	В	*	mg/L	0.0001	0.0005	09/21/21 13:15	bsu
Lead, total (3050)	M6020B ICP-MS	505	17.9			mg/Kg	0.0505	0.253	09/17/21 14:37	bsu
Magnesium (1312)	M6010D ICP	1	0.96	В	*	mg/L	0.2	1	09/17/21 20:29	jlw
Magnesium, total (3050)	M6010D ICP	101	5120			mg/Kg	20.2	101	09/18/21 0:34	jlw
Manganese (1312)	M6010D ICP	1	<0.01	U	*	mg/L	0.01	0.05	09/17/21 20:29	jlw
Manganese, total (3050)	M6010D ICP	101	567		*	mg/Kg	1.01	5.05	09/18/21 0:34	jlw
Mercury (1312)	M7470A CVAA	1	<0.0002	U	*	mg/L	0.0002	0.001	09/16/21 12:41	mlh
Mercury by Direct Combustion AA	M7473 CVAAS	1	16.4		*	ng/g	2.73	13.65	09/20/21 10:48	mlh
Molybdenum (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.1	09/17/21 20:29	jlw
Molybdenum, total (3050)	M6010D ICP	101	2.96	В		mg/Kg	2.02	10.1	09/18/21 0:34	jlw
Nickel (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.001	09/21/21 13:15	bsu
Nickel, total (3050)	M6020B ICP-MS	505	9.70			mg/Kg	0.202	0.505	09/17/21 14:37	bsu
Selenium (1312)	M6020B ICP-MS	1	0.00019	В	*	mg/L	0.0001	0.00025	09/21/21 13:15	bsu
Selenium, total (3050)	M6020B ICP-MS	505	0.146		*	mg/Kg	0.0505	0.126	09/17/21 14:37	bsu
Thallium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.0005	09/21/21 13:15	bsu
Thallium, total (3050)	M6020B ICP-MS	505	0.221	В		mg/Kg	0.0505	0.253	09/17/21 14:37	bsu
Zinc (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.05	09/17/21 20:29	jlw
Zinc, total (3050)	M6010D ICP	101	84.9		*	mg/Kg	2.02	5.05	09/18/21 0:34	jlw

REPIN.02.06.05.01

L68444-2109241335 Page 2 of 59

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: DI-19 SOUTH

ACZ Sample ID: L68444-01

Date Sampled: 09/09/21 14:10

Date Received: 09/13/21

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	1	0.9		*	%	0.1	0.5	09/16/21 10:12	jpb
Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC) 1	0.3	В	*	%	0.1	0.5	09/16/21 10:12	jpb
Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	1	0.6		*	%	0.1	0.5	09/16/21 10:12	jpb
Conductivity @25C	SM2510B									
Conductivity		1	0.620		*	mmhos/cm	0.001	0.01	09/16/21 0:00	zln
Max Particle Size		1	2000		*	um			09/16/21 0:00	zln
Temperature		1	20.0		*	С	0.1	0.1	09/16/21 0:00	zln
pH, Saturated Paste	EPA 600/2-78-054 section 3.2.2									
Max Particle Size		1	2000		*	um			09/16/21 0:00	zln
рН		1	7.7		*	units	0.1	0.1	09/16/21 0:00	zln
Solids, Percent	D2216-80	1	93.2		*	%	0.1	0.5	09/14/21 19:18	zln
Sulfur, total	ASTM D-4239-85C, LECO Furnace	1	0.02	В	*	%	0.01	0.1	09/16/21 9:26	jpb
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				09/14/21 9:00	mep
Digestion - Hot Plate	M3050B ICP								09/16/21 12:02	mep
Digestion - Hot Plate	M3050B ICP-MS								09/16/21 12:02	mep
Saturated Paste Extraction	USDA No. 60 (2)				*				09/16/21 13:05	zln
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2				*				09/15/21 8:15	jpb
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2				*				09/15/21 8:15	jpb
Synthetic Precip. Leaching Procedure	M1312								09/15/21 2:16	zln

Project ID:

Sample ID: DI-20

ACZ Sample ID: *L68444-02*

Date Sampled: 09/09/21 13:45

Date Received: 09/13/21

Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Hot Plate Digestion (1312)	M3010A ICP								09/16/21 14:40	kja
Total Hot Plate Digestion (1312)	M3010A ICP-MS								09/17/21 8:30	mfm
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	M6010D ICP	1	<0.05	U	*	mg/L	0.05	0.25	09/17/21 20:37	jlw
Aluminum, total (3050)	M6010D ICP	102	24900		*	mg/Kg	5.1	25.5	09/18/21 0:38	jlw
Antimony (1312)	M6020B ICP-MS	1	0.00046	В	*	mg/L	0.0004	0.002	09/21/21 13:21	bsu
Antimony, total (3050)	M6020B ICP-MS	510	0.426	В	*	mg/Kg	0.204	1.02	09/17/21 14:46	bsu
Arsenic (1312)	M6020B ICP-MS	1	0.00171			mg/L	0.0002	0.001	09/21/21 13:21	bsu
Arsenic, total (3050)	M6020B ICP-MS	510	4.88			mg/Kg	0.102	0.51	09/17/21 14:46	bsu
Cadmium (1312)	M6020B ICP-MS	1	<0.00005	U	*	mg/L	0.00005	0.00025	09/21/21 13:21	bsu
Cadmium, total (3050)	M6020B ICP-MS	510	0.646			mg/Kg	0.0255	0.128	09/17/21 14:46	bsu
Calcium (1312)	M6010D ICP	1	24.7			mg/L	0.1	0.5	09/17/21 20:37	jlw
Calcium, total (3050)	M6010D ICP	102	16800			mg/Kg	10.2	51	09/18/21 0:38	jlw
Copper (1312)	M6020B ICP-MS	1	0.0179			mg/L	0.0008	0.002	09/21/21 13:21	bsu
Copper, total (3050)	M6020B ICP-MS	510	267		*	mg/Kg	0.408	1.02	09/17/21 14:46	bsu
Iron (1312)	M6010D ICP	1	<0.06	U	*	mg/L	0.06	0.15	09/17/21 20:37	jlw
Iron, total (3050)	M6010D ICP	102	24800		*	mg/Kg	6.12	15.3	09/18/21 0:38	jlw
Lead (1312)	M6020B ICP-MS	1	0.00016	В	*	mg/L	0.0001	0.0005	09/21/21 13:21	bsu
Lead, total (3050)	M6020B ICP-MS	510	21.5			mg/Kg	0.051	0.255	09/17/21 14:46	bsu
Magnesium (1312)	M6010D ICP	1	2.92		*	mg/L	0.2	1	09/17/21 20:37	jlw
Magnesium, total (3050)	M6010D ICP	102	6900			mg/Kg	20.4	102	09/18/21 0:38	jlw
Manganese (1312)	M6010D ICP	1	<0.01	U	*	mg/L	0.01	0.05	09/17/21 20:37	jlw
Manganese, total (3050)	M6010D ICP	102	850		*	mg/Kg	1.02	5.1	09/18/21 0:38	jlw
Mercury (1312)	M7470A CVAA	1	<0.0002	U	*	mg/L	0.0002	0.001	09/16/21 12:42	mlh
Mercury by Direct Combustion AA	M7473 CVAAS	1	33.8		*	ng/g	2.74	13.7	09/20/21 11:04	mlh
Molybdenum (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.1	09/17/21 20:37	jlw
Molybdenum, total (3050)	M6010D ICP	102	3.54	В		mg/Kg	2.04	10.2	09/18/21 0:38	jlw
Nickel (1312)	M6020B ICP-MS	1	0.00116		*	mg/L	0.0004	0.001	09/21/21 13:21	bsu
Nickel, total (3050)	M6020B ICP-MS	510	12.9			mg/Kg	0.204	0.51	09/17/21 14:46	bsu
Selenium (1312)	M6020B ICP-MS	1	0.00017	В	*	mg/L	0.0001	0.00025	09/21/21 13:21	bsu
Selenium, total (3050)	M6020B ICP-MS	510	0.213		*	mg/Kg	0.051	0.128	09/17/21 14:46	bsu
Thallium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.0005	09/21/21 13:21	bsu
Thallium, total (3050)	M6020B ICP-MS	510	0.442			mg/Kg	0.051	0.255	09/17/21 14:46	bsu
Zinc (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.05	09/17/21 20:37	jlw
Zinc, total (3050)	M6010D ICP	102	99.2		*	mg/Kg	2.04	5.1	09/18/21 0:38	jlw

REPIN.02.06.05.01

L68444-2109241335 Page 4 of 59

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: DI-20

ACZ Sample ID: L68444-02

Date Sampled: 09/09/21 13:45

Date Received: 09/13/21

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	1	1.6		*	%	0.1	0.5	09/16/21 10:24	jpb
Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC	;) 1	0.5		*	%	0.1	0.5	09/16/21 10:24	jpb
Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	1	1.1		*	%	0.1	0.5	09/16/21 10:24	jpb
Conductivity @25C	SM2510B									
Conductivity		1	0.778		*	mmhos/cm	0.001	0.01	09/16/21 0:00	zln
Max Particle Size		1	2000		*	um			09/16/21 0:00	zln
Temperature		1	20.4		*	С	0.1	0.1	09/16/21 0:00	zln
pH, Saturated Paste	EPA 600/2-78-054 section 3.2.2									
Max Particle Size		1	2000		*	um			09/16/21 0:00	zln
рН		1	7.7		*	units	0.1	0.1	09/16/21 0:00	zln
Solids, Percent	D2216-80	1	74.8		*	%	0.1	0.5	09/14/21 20:31	zln
Sulfur, total	ASTM D-4239-85C, LECO Furnace	1	0.02	В	*	%	0.01	0.1	09/16/21 9:30	jpb
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				09/14/21 9:03	mep
Digestion - Hot Plate	M3050B ICP								09/16/21 13:07	mep
Digestion - Hot Plate	M3050B ICP-MS								09/16/21 13:07	mep
Saturated Paste Extraction	USDA No. 60 (2)				*				09/16/21 13:07	zln
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2				*				09/15/21 8:20	jpb
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2				*				09/15/21 8:20	jpb
Synthetic Precip. Leaching Procedure	M1312								09/15/21 4:18	zln

Project ID:

Sample ID: DI-21

Date Sampled: 09/09/21 11:30

Date Received: 09/13/21

Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Hot Plate Digestion (1312)	M3010A ICP-MS								09/17/21 8:30	mfm
Total Hot Plate Digestion (1312)	M3010A ICP								09/16/21 15:01	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	M6010D ICP	1	0.692		*	mg/L	0.05	0.25	09/17/21 20:48	jlw
Aluminum, total (3050)	M6010D ICP	101	2810		*	mg/Kg	5.05	25.3	09/18/21 0:50	jlw
Antimony (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.002	09/21/21 13:22	bsu
Antimony, total (3050)	M6020B ICP-MS	505	<0.202	U	*	mg/Kg	0.202	1.01	09/17/21 14:48	bsu
Arsenic (1312)	M6020B ICP-MS	1	0.00185			mg/L	0.0002	0.001	09/21/21 13:22	bsu
Arsenic, total (3050)	M6020B ICP-MS	505	3.36			mg/Kg	0.101	0.505	09/17/21 14:48	bsu
Cadmium (1312)	M6020B ICP-MS	1	<0.00005	U	*	mg/L	0.00005	0.00025	09/21/21 13:22	bsu
Cadmium, total (3050)	M6020B ICP-MS	505	0.110	В		mg/Kg	0.0253	0.126	09/17/21 14:48	bsu
Calcium (1312)	M6010D ICP	1	6.45			mg/L	0.1	0.5	09/17/21 20:48	jlw
Calcium, total (3050)	M6010D ICP	101	3930			mg/Kg	10.1	50.5	09/18/21 0:50	jlw
Copper (1312)	M6020B ICP-MS	1	0.00164	В		mg/L	0.0008	0.002	09/21/21 13:22	bsu
Copper, total (3050)	M6020B ICP-MS	505	6.00		*	mg/Kg	0.404	1.01	09/17/21 14:48	bsu
Iron (1312)	M6010D ICP	1	0.283		*	mg/L	0.06	0.15	09/17/21 20:48	jlw
Iron, total (3050)	M6010D ICP	101	5350		*	mg/Kg	6.06	15.2	09/18/21 0:50	jlw
Lead (1312)	M6020B ICP-MS	1	0.00045	В	*	mg/L	0.0001	0.0005	09/21/21 13:22	bsu
Lead, total (3050)	M6020B ICP-MS	505	5.90			mg/Kg	0.0505	0.253	09/17/21 14:48	bsu
Magnesium (1312)	M6010D ICP	1	0.26	В	*	mg/L	0.2	1	09/17/21 20:48	jlw
Magnesium, total (3050)	M6010D ICP	101	1030			mg/Kg	20.2	101	09/18/21 0:50	jlw
Manganese (1312)	M6010D ICP	1	<0.01	U	*	mg/L	0.01	0.05	09/17/21 20:48	jlw
Manganese, total (3050)	M6010D ICP	101	103		*	mg/Kg	1.01	5.05	09/18/21 0:50	jlw
Mercury (1312)	M7470A CVAA	1	<0.0002	U	*	mg/L	0.0002	0.001	09/16/21 12:45	mlh
Mercury by Direct Combustion AA	M7473 CVAAS	1	<2.07	U	*	ng/g	2.07	10.35	09/20/21 11:27	mlh
Molybdenum (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.1	09/17/21 20:48	jlw
Molybdenum, total (3050)	M6010D ICP	101	<2.02	U		mg/Kg	2.02	10.1	09/18/21 0:50	jlw
Nickel (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.001	09/21/21 13:22	bsu
Nickel, total (3050)	M6020B ICP-MS	505	2.28			mg/Kg	0.202	0.505	09/17/21 14:48	bsu
Selenium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.00025	09/21/21 13:22	bsu
Selenium, total (3050)	M6020B ICP-MS	505	<0.0505	U	*	mg/Kg	0.0505	0.126	09/17/21 14:48	bsu
Thallium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.0005	09/21/21 13:22	bsu
Thallium, total (3050)	M6020B ICP-MS	505	<0.0505	U		mg/Kg	0.0505	0.253	09/17/21 14:48	bsu
Zinc (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.05	09/17/21 20:48	jlw
Zinc, total (3050)	M6010D ICP	101	13.6		*	mg/Kg	2.02	5.05	09/18/21 0:50	jlw

REPIN.02.06.05.01

L68444-2109241335 Page 6 of 59

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: DI-21

ACZ Sample ID: L68444-03

Date Sampled: 09/09/21 11:30

Date Received: 09/13/21

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	1	0.2	В	*	%	0.1	0.5	09/16/21 10:36	jpb
Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC) 1	0.2	В	*	%	0.1	0.5	09/16/21 10:36	jpb
Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	1	<0.1	U	*	%	0.1	0.5	09/16/21 10:36	jpb
Conductivity @25C	SM2510B									
Conductivity		1	0.317		*	mmhos/cm	0.001	0.01	09/17/21 0:00	zln
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
Temperature		1	20.7		*	С	0.1	0.1	09/17/21 0:00	zln
pH, Saturated Paste	EPA 600/2-78-054 section 3.2.2									
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
рН		1	8.1		*	units	0.1	0.1	09/17/21 0:00	zln
Solids, Percent	D2216-80	1	99.7		*	%	0.1	0.5	09/14/21 21:45	zln
Sulfur, total	ASTM D-4239-85C, LECO Furnace	1	<0.01	U	*	%	0.01	0.1	09/16/21 9:33	jpb
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				09/14/21 9:06	mep
Digestion - Hot Plate	M3050B ICP								09/16/21 13:29	mep
Digestion - Hot Plate	M3050B ICP-MS								09/16/21 13:29	mep
Saturated Paste Extraction	USDA No. 60 (2)				*				09/16/21 13:08	zln
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2				*				09/15/21 8:25	jpb
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2				*				09/15/21 8:25	jpb
Synthetic Precip. Leaching Procedure	M1312								09/15/21 5:20	zln

Project ID:

Sample ID: SCR-2

ACZ Sample ID: L68444-07

Date Sampled: 09/09/21 12:06 Date Received: 09/13/21

Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Hot Plate Digestion (1312)	M3010A ICP-MS								09/17/21 8:30	mfm
Total Hot Plate Digestion (1312)	M3010A ICP								09/16/21 15:21	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	M6010D ICP	1	0.432		*	mg/L	0.05	0.25	09/17/21 20:52	jlw
Aluminum, total (3050)	M6010D ICP	100	3490		*	mg/Kg	5	25	09/18/21 0:58	jlw
Antimony (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.002	09/21/21 13:24	bsu
Antimony, total (3050)	M6020B ICP-MS	500	0.314	В	*	mg/Kg	0.2	1	09/17/21 14:49	bsu
Arsenic (1312)	M6020B ICP-MS	1	0.00186			mg/L	0.0002	0.001	09/21/21 13:24	bsu
Arsenic, total (3050)	M6020B ICP-MS	500	3.84			mg/Kg	0.1	0.5	09/17/21 14:49	bsu
Cadmium (1312)	M6020B ICP-MS	1	<0.00005	U	*	mg/L	0.00005	0.00025	09/21/21 13:24	bsu
Cadmium, total (3050)	M6020B ICP-MS	500	0.162			mg/Kg	0.025	0.125	09/17/21 14:49	bsu
Calcium (1312)	M6010D ICP	1	5.43			mg/L	0.1	0.5	09/17/21 20:52	jlw
Calcium, total (3050)	M6010D ICP	100	3680			mg/Kg	10	50	09/18/21 0:58	jlw
Copper (1312)	M6020B ICP-MS	1	0.00180	В		mg/L	0.0008	0.002	09/21/21 13:24	bsu
Copper, total (3050)	M6020B ICP-MS	500	16.5		*	mg/Kg	0.4	1	09/17/21 14:49	bsu
Iron (1312)	M6010D ICP	1	0.237		*	mg/L	0.06	0.15	09/17/21 20:52	jlw
Iron, total (3050)	M6010D ICP	100	11300		*	mg/Kg	6	15	09/18/21 0:58	jlw
Lead (1312)	M6020B ICP-MS	1	0.00045	В	*	mg/L	0.0001	0.0005	09/21/21 13:24	bsu
Lead, total (3050)	M6020B ICP-MS	500	9.54			mg/Kg	0.05	0.25	09/17/21 14:49	bsu
Magnesium (1312)	M6010D ICP	1	0.41	В	*	mg/L	0.2	1	09/17/21 20:52	jlw
Magnesium, total (3050)	M6010D ICP	100	1640			mg/Kg	20	100	09/18/21 0:58	jlw
Manganese (1312)	M6010D ICP	1	<0.01	U	*	mg/L	0.01	0.05	09/17/21 20:52	jlw
Manganese, total (3050)	M6010D ICP	100	131		*	mg/Kg	1	5	09/18/21 0:58	jlw
Mercury (1312)	M7470A CVAA	1	<0.0002	U	*	mg/L	0.0002	0.001	09/16/21 12:46	mlh
Mercury by Direct Combustion AA	M7473 CVAAS	1	3.17	В	*	ng/g	2.03	10.15	09/20/21 11:35	mlh
Molybdenum (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.1	09/17/21 20:52	jlw
Molybdenum, total (3050)	M6010D ICP	100	<2	U		mg/Kg	2	10	09/18/21 0:58	jlw
Nickel (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.001	09/21/21 13:24	bsu
Nickel, total (3050)	M6020B ICP-MS	500	4.59			mg/Kg	0.2	0.5	09/17/21 14:49	bsu
Selenium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.00025	09/21/21 13:24	bsu
Selenium, total (3050)	M6020B ICP-MS	500	0.0939	В	*	mg/Kg	0.05	0.125	09/17/21 14:49	bsu
Thallium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.0005	09/21/21 13:24	bsu
Thallium, total (3050)	M6020B ICP-MS	500	0.0507	В		mg/Kg	0.05	0.25	09/17/21 14:49	bsu
Zinc (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.05	09/17/21 20:52	jlw

REPIN.02.06.05.01

Zinc, total (3050)

M6010D ICP

09/18/21 0:58

L68444-2109241335 Page 8 of 59

mg/Kg

24.2

100

jlw

^{*} Please refer to Qualifier Reports for details.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Hudbay Minerals

Project ID:

Sample ID: SCR-2

ACZ Sample ID: L68444-07

Date Sampled: 09/09/21 12:06

Date Received: 09/13/21

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	1	<0.1	U	*	%	0.1	0.5	09/16/21 10:48	jpb
Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC) 1	<0.1	U	*	%	0.1	0.5	09/16/21 10:48	jpb
Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	1	<0.1	U	*	%	0.1	0.5	09/16/21 10:48	jpb
Conductivity @25C	SM2510B									
Conductivity		1	0.329		*	mmhos/cm	0.001	0.01	09/17/21 0:00	zln
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
Temperature		1	20.7		*	С	0.1	0.1	09/17/21 0:00	zln
pH, Saturated Paste	EPA 600/2-78-054 section 3.2.2									
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
рН		1	8.0		*	units	0.1	0.1	09/17/21 0:00	zln
Solids, Percent	D2216-80	1	99.2		*	%	0.1	0.5	09/15/21 2:39	zln
Sulfur, total	ASTM D-4239-85C, LECO Furnace	1	0.02	В	*	%	0.01	0.1	09/16/21 9:37	jpb
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				09/14/21 9:10	mep
Digestion - Hot Plate	M3050B ICP								09/16/21 13:50	mep
Digestion - Hot Plate	M3050B ICP-MS								09/16/21 13:50	mep
Saturated Paste Extraction	USDA No. 60 (2)				*				09/16/21 13:10	zln
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2				*				09/15/21 8:30	jpb
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2				*				09/15/21 8:30	jpb
Synthetic Precip. Leaching Procedure	M1312								09/15/21 6:21	zln

Project ID:

Sample ID: SCR-2B

Date Sampled: 09/09/21 12:06

Date Received: 09/13/21

Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Hot Plate Digestion (1312)	M3010A ICP-MS								09/17/21 8:30	mfm
Total Hot Plate Digestion (1312)	M3010A ICP								09/16/21 15:42	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	M6010D ICP	1	0.556		*	mg/L	0.05	0.25	09/17/21 21:00	jlw
Aluminum, total (3050)	M6010D ICP	100	3080		*	mg/Kg	5	25	09/18/21 1:02	jlw
Antimony (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.002	09/21/21 13:26	bsu
Antimony, total (3050)	M6020B ICP-MS	500	0.335	В	*	mg/Kg	0.2	1	09/17/21 14:51	bsu
Arsenic (1312)	M6020B ICP-MS	1	0.00162			mg/L	0.0002	0.001	09/21/21 13:26	bsu
Arsenic, total (3050)	M6020B ICP-MS	500	2.77			mg/Kg	0.1	0.5	09/17/21 14:51	bsu
Cadmium (1312)	M6020B ICP-MS	1	<0.00005	U	*	mg/L	0.00005	0.00025	09/21/21 13:26	bsu
Cadmium, total (3050)	M6020B ICP-MS	500	0.221			mg/Kg	0.025	0.125	09/17/21 14:51	bsu
Calcium (1312)	M6010D ICP	1	5.74			mg/L	0.1	0.5	09/17/21 21:00	jlw
Calcium, total (3050)	M6010D ICP	100	8220			mg/Kg	10	50	09/18/21 1:02	jlw
Copper (1312)	M6020B ICP-MS	1	0.00244			mg/L	0.0008	0.002	09/21/21 13:26	bsu
Copper, total (3050)	M6020B ICP-MS	500	10.7		*	mg/Kg	0.4	1	09/17/21 14:51	bsu
Iron (1312)	M6010D ICP	1	0.291		*	mg/L	0.06	0.15	09/17/21 21:00	jlw
Iron, total (3050)	M6010D ICP	100	8930		*	mg/Kg	6	15	09/18/21 1:02	jlw
Lead (1312)	M6020B ICP-MS	1	0.00059		*	mg/L	0.0001	0.0005	09/21/21 13:26	bsu
Lead, total (3050)	M6020B ICP-MS	500	7.92			mg/Kg	0.05	0.25	09/17/21 14:51	bsu
Magnesium (1312)	M6010D ICP	1	0.44	В	*	mg/L	0.2	1	09/17/21 21:00	jlw
Magnesium, total (3050)	M6010D ICP	100	1390			mg/Kg	20	100	09/18/21 1:02	jlw
Manganese (1312)	M6010D ICP	1	<0.01	U	*	mg/L	0.01	0.05	09/17/21 21:00	jlw
Manganese, total (3050)	M6010D ICP	100	245		*	mg/Kg	1	5	09/18/21 1:02	jlw
Mercury (1312)	M7470A CVAA	1	<0.0002	U	*	mg/L	0.0002	0.001	09/16/21 12:47	mlh
Mercury by Direct Combustion AA	M7473 CVAAS	1	2.88	В	*	ng/g	2.08	10.4	09/20/21 11:44	mlh
Molybdenum (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.1	09/17/21 21:00	jlw
Molybdenum, total (3050)	M6010D ICP	100	<2	U		mg/Kg	2	10	09/18/21 1:02	jlw
Nickel (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.001	09/21/21 13:26	bsu
Nickel, total (3050)	M6020B ICP-MS	500	3.54			mg/Kg	0.2	0.5	09/17/21 14:51	bsu
Selenium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.00025	09/21/21 13:26	bsu
Selenium, total (3050)	M6020B ICP-MS	500	<0.05	U	*	mg/Kg	0.05	0.125	09/17/21 14:51	bsu
Thallium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.0005	09/21/21 13:26	bsu
Thallium, total (3050)	M6020B ICP-MS	500	0.0582	В		mg/Kg	0.05	0.25	09/17/21 14:51	bsu
Zinc (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.05	09/17/21 21:00	jlw
Zinc, total (3050)	M6010D ICP	100	21.5		*	mg/Kg	2	5	09/18/21 1:02	jlw

REPIN.02.06.05.01

L68444-2109241335 Page 10 of 59

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: SCR-2B

ACZ Sample ID: L68444-08

Date Sampled: 09/09/21 12:06

Date Received: 09/13/21

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	1	<0.1	U	*	%	0.1	0.5	09/16/21 11:00	jpb
Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC) 1	<0.1	U	*	%	0.1	0.5	09/16/21 11:00	jpb
Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	1	<0.1	U	*	%	0.1	0.5	09/16/21 11:00	jpb
Conductivity @25C	SM2510B									
Conductivity		1	0.312		*	mmhos/cm	0.001	0.01	09/17/21 0:00	zln
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
Temperature		1	21.9		*	С	0.1	0.1	09/17/21 0:00	zln
pH, Saturated Paste	EPA 600/2-78-054 section 3.2.2									
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
рН		1	8.1		*	units	0.1	0.1	09/17/21 0:00	zln
Solids, Percent	D2216-80	1	98.8		*	%	0.1	0.5	09/15/21 3:52	zln
Sulfur, total	ASTM D-4239-85C, LECO Furnace	1	0.01	В	*	%	0.01	0.1	09/16/21 9:41	jpb
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				09/14/21 9:13	mep
Digestion - Hot Plate	M3050B ICP								09/16/21 14:12	mep
Digestion - Hot Plate	M3050B ICP-MS								09/16/21 14:12	mep
Saturated Paste Extraction	USDA No. 60 (2)				*				09/16/21 13:11	zln
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2				*				09/15/21 8:35	jpb
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2				*				09/15/21 8:35	jpb
Synthetic Precip. Leaching Procedure	M1312								09/15/21 7:22	zln

Project ID:

Sample ID: SCR-3

ACZ Sample ID: L68444-09

Date Sampled: 09/09/21 11:20

Date Received: 09/13/21

Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date /	Analyst
Total Hot Plate Digestion (1312)	M3010A ICP								09/16/21 16:02	kja
Total Hot Plate Digestion (1312)	M3010A ICP-MS								09/17/21 8:30	mfm
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date /	Analyst
Aluminum (1312)	M6010D ICP	1	0.600		*	mg/L	0.05	0.25	09/17/21 21:04	jlw
Aluminum, total (3050)	M6010D ICP	100	2690		*	mg/Kg	5	25	09/18/21 1:06	jlw
Antimony (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.002	09/21/21 13:28	bsu
Antimony, total (3050)	M6020B ICP-MS	500	<0.2	U	*	mg/Kg	0.2	1	09/17/21 14:53	bsu
Arsenic (1312)	M6020B ICP-MS	1	0.00114			mg/L	0.0002	0.001	09/21/21 13:28	bsu
Arsenic, total (3050)	M6020B ICP-MS	500	2.41			mg/Kg	0.1	0.5	09/17/21 14:53	bsu
Cadmium (1312)	M6020B ICP-MS	1	<0.00005	U	*	mg/L	0.00005	0.00025	09/21/21 13:28	bsu
Cadmium, total (3050)	M6020B ICP-MS	500	0.129			mg/Kg	0.025	0.125	09/17/21 14:53	bsu
Calcium (1312)	M6010D ICP	1	6.22			mg/L	0.1	0.5	09/17/21 21:04	jlw
Calcium, total (3050)	M6010D ICP	100	8520			mg/Kg	10	50	09/18/21 1:06	jlw
Copper (1312)	M6020B ICP-MS	1	0.00190	В		mg/L	0.0008	0.002	09/21/21 13:28	bsu
Copper, total (3050)	M6020B ICP-MS	500	7.31		*	mg/Kg	0.4	1	09/17/21 14:53	bsu
Iron (1312)	M6010D ICP	1	0.171		*	mg/L	0.06	0.15	09/17/21 21:04	jlw
Iron, total (3050)	M6010D ICP	100	6620		*	mg/Kg	6	15	09/18/21 1:06	jlw
Lead (1312)	M6020B ICP-MS	1	0.00043	В	*	mg/L	0.0001	0.0005	09/21/21 13:28	bsu
Lead, total (3050)	M6020B ICP-MS	500	6.38			mg/Kg	0.05	0.25	09/17/21 14:53	bsu
Magnesium (1312)	M6010D ICP	1	0.34	В	*	mg/L	0.2	1	09/17/21 21:04	jlw
Magnesium, total (3050)	M6010D ICP	100	1130			mg/Kg	20	100	09/18/21 1:06	jlw
Manganese (1312)	M6010D ICP	1	<0.01	U	*	mg/L	0.01	0.05	09/17/21 21:04	jlw
Manganese, total (3050)	M6010D ICP	100	84.9		*	mg/Kg	1	5	09/18/21 1:06	jlw
Mercury (1312)	M7470A CVAA	1	<0.0002	U	*	mg/L	0.0002	0.001	09/16/21 12:48	mlh
Mercury by Direct Combustion AA	M7473 CVAAS	1	5.42	В	*	ng/g	2.57	12.85	09/20/21 11:52	mlh
Molybdenum (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.1	09/17/21 21:04	jlw
Molybdenum, total (3050)	M6010D ICP	100	<2	U		mg/Kg	2	10	09/18/21 1:06	jlw
Nickel (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.001	09/21/21 13:28	bsu
Nickel, total (3050)	M6020B ICP-MS	500	2.91			mg/Kg	0.2	0.5	09/17/21 14:53	bsu
Selenium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.00025	09/21/21 13:28	bsu
Selenium, total (3050)	M6020B ICP-MS	500	<0.05	U	*	mg/Kg	0.05	0.125	09/17/21 14:53	bsu
Thallium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.0005	09/21/21 13:28	bsu
Thallium, total (3050)	M6020B ICP-MS	500	<0.05	U		mg/Kg	0.05	0.25	09/17/21 14:53	bsu
Zinc (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.05	09/17/21 21:04	jlw
Zinc, total (3050)	M6010D ICP	100	19.1		*	mg/Kg	2	5	09/18/21 1:06	jlw

REPIN.02.06.05.01

L68444-2109241335 Page 12 of 59

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: SCR-3

ACZ Sample ID: L68444-09

Date Sampled: 09/09/21 11:20

Date Received: 09/13/21

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	1	0.2	В	*	%	0.1	0.5	09/16/21 11:12	jpb
Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC	;) 1	0.1	В	*	%	0.1	0.5	09/16/21 11:12	jpb
Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	1	0.1	В	*	%	0.1	0.5	09/16/21 11:12	jpb
Conductivity @25C	SM2510B									
Conductivity		1	0.260		*	mmhos/cm	0.001	0.01	09/17/21 0:00	zln
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
Temperature		1	21.1		*	С	0.1	0.1	09/17/21 0:00	zln
pH, Saturated Paste	EPA 600/2-78-054 section 3.2.2									
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
рН		1	8.0		*	units	0.1	0.1	09/17/21 0:00	zln
Solids, Percent	D2216-80	1	99.1		*	%	0.1	0.5	09/15/21 5:06	zln
Sulfur, total	ASTM D-4239-85C, LECO Furnace	1	0.02	В	*	%	0.01	0.1	09/16/21 9:45	jpb
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				09/14/21 9:16	mep
Digestion - Hot Plate	M3050B ICP								09/16/21 14:33	mep
Digestion - Hot Plate	M3050B ICP-MS								09/16/21 14:33	mep
Saturated Paste Extraction	USDA No. 60 (2)				*				09/16/21 13:14	zln
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2				*				09/15/21 8:40	jpb
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2				*				09/15/21 8:40	jpb
Synthetic Precip. Leaching Procedure	M1312								09/15/21 8:23	zln

09/13/21

Hudbay Minerals

Project ID:

Sample ID: SCR-4 ACZ Sample ID: L68444-10

Date Sampled: 09/09/21 11:35 Date Received:

Sample Matrix: Soil

Ino	rganic Prep										
	rameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
	al Hot Plate	M3010A ICP-MS								09/17/21 8:30	mfm
	estion (1312)										
	al Hot Plate	M3010A ICP								09/16/21 16:23	kja
Dig	estion (1312)										
Me	tals Analysis										
Par	rameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alu	minum (1312)	M6010D ICP	1	0.613		*	mg/L	0.05	0.25	09/17/21 21:08	jlw
Alu	minum, total (3050)	M6010D ICP	101	2740		*	mg/Kg	5.05	25.3	09/18/21 1:09	jlw
Ant	timony (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.002	09/21/21 13:32	bsu
Ant	timony, total (3050)	M6020B ICP-MS	505	0.305	В	*	mg/Kg	0.202	1.01	09/17/21 14:55	bsu
Ars	enic (1312)	M6020B ICP-MS	1	0.00147			mg/L	0.0002	0.001	09/21/21 13:32	bsu
Ars	enic, total (3050)	M6020B ICP-MS	505	2.72			mg/Kg	0.101	0.505	09/17/21 14:55	bsu
Cad	dmium (1312)	M6020B ICP-MS	1	<0.00005	U	*	mg/L	0.00005	0.00025	09/21/21 13:32	bsu
Cad	dmium, total (3050)	M6020B ICP-MS	505	0.130			mg/Kg	0.0253	0.126	09/17/21 14:55	bsu
Cal	cium (1312)	M6010D ICP	1	5.66			mg/L	0.1	0.5	09/17/21 21:08	jlw
Cal	cium, total (3050)	M6010D ICP	101	4660			mg/Kg	10.1	50.5	09/18/21 1:09	jlw
Cop	pper (1312)	M6020B ICP-MS	1	0.00181	В		mg/L	0.0008	0.002	09/21/21 13:32	bsu
Cop	pper, total (3050)	M6020B ICP-MS	505	14.9		*	mg/Kg	0.404	1.01	09/17/21 14:55	bsu
Iror	า (1312)	M6010D ICP	1	0.372		*	mg/L	0.06	0.15	09/17/21 21:08	jlw
Iror	n, total (3050)	M6010D ICP	101	20400		*	mg/Kg	6.06	15.2	09/18/21 1:09	jlw
Lea	ad (1312)	M6020B ICP-MS	1	0.00145		*	mg/L	0.0001	0.0005	09/21/21 13:32	bsu
Lea	ad, total (3050)	M6020B ICP-MS	505	8.83			mg/Kg	0.0505	0.253	09/17/21 14:55	bsu
Ma	gnesium (1312)	M6010D ICP	1	0.34	В	*	mg/L	0.2	1	09/17/21 21:08	jlw
Ma ₍	gnesium, total 50)	M6010D ICP	101	1160			mg/Kg	20.2	101	09/18/21 1:09	jlw
Ma	nganese (1312)	M6010D ICP	1	<0.01	U	*	mg/L	0.01	0.05	09/17/21 21:08	jlw
Ma (30	nganese, total 50)	M6010D ICP	101	129		*	mg/Kg	1.01	5.05	09/18/21 1:09	jlw
Me	rcury (1312)	M7470A CVAA	1	<0.0002	U	*	mg/L	0.0002	0.001	09/16/21 12:49	mlh
	rcury by Direct mbustion AA	M7473 CVAAS	1	5.35	В	*	ng/g	2.2	11	09/20/21 12:00	mlh
Mo	lybdenum (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.1	09/17/21 21:08	jlw
Mo (30	lybdenum, total 50)	M6010D ICP	101	<2.02	U		mg/Kg	2.02	10.1	09/18/21 1:09	jlw
Nic	kel (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.001	09/21/21 13:32	bsu
Nic	kel, total (3050)	M6020B ICP-MS	505	4.52			mg/Kg	0.202	0.505	09/17/21 14:55	bsu
Sel	enium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.00025	09/21/21 13:32	bsu
Sel	enium, total (3050)	M6020B ICP-MS	505	<0.0505	U	*	mg/Kg	0.0505	0.126	09/17/21 14:55	bsu
Tha	allium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.0005	09/21/21 13:32	bsu
Tha	allium, total (3050)	M6020B ICP-MS	505	0.0919	В		mg/Kg	0.0505	0.253	09/17/21 14:55	bsu
Zin	c (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.05	09/17/21 21:08	jlw
٠.	1 1 1 (0050)	140040D 10D	404	00.0			".	0.00	- 0-	00/40/04 4 00	

REPIN.02.06.05.01

Zinc, total (3050)

M6010D ICP

09/18/21 1:09

L68444-2109241335 Page 14 of 59

mg/Kg

2.02

5.05

22.9

101

jlw

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: SCR-4

ACZ Sample ID: L68444-10

Date Sampled: 09/09/21 11:35

Date Received: 09/13/21 Sample Matrix: Soil

Soil Analysis

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	1	<0.1	U	*	%	0.1	0.5	09/16/21 11:24	jpb
Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC	1	<0.1	U	*	%	0.1	0.5	09/16/21 11:24	jpb
Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	1	<0.1	U	*	%	0.1	0.5	09/16/21 11:24	jpb
Conductivity @25C	SM2510B									
Conductivity		1	0.250		*	mmhos/cm	0.001	0.01	09/17/21 0:00	zln
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
Temperature		1	21.0		*	С	0.1	0.1	09/17/21 0:00	zln
pH, Saturated Paste	EPA 600/2-78-054 section 3.2.2									
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
pН		1	7.7		*	units	0.1	0.1	09/17/21 0:00	zln
Solids, Percent	D2216-80	1	98.6		*	%	0.1	0.5	09/15/21 6:19	zln
Sulfur, total	ASTM D-4239-85C, LECO Furnace	† 1	0.02	В	*	%	0.01	0.1	09/16/21 9:48	jpb

Soil Preparation

Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				09/14/21 9:20	mep
Digestion - Hot Plate	M3050B ICP								09/16/21 14:55	mep
Digestion - Hot Plate	M3050B ICP-MS								09/16/21 14:55	mep
Saturated Paste Extraction	USDA No. 60 (2)				*				09/16/21 13:15	zln
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2				*				09/15/21 8:45	jpb
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2				*				09/15/21 8:45	jpb
Synthetic Precip. Leaching Procedure	M1312								09/15/21 9:24	zln

Project ID:

Sample ID: SCR-5

ACZ Sample ID: L68444-11

Date Sampled: 09/09/21 09:45

Date Received: 09/13/21 Sample Matrix: Soil

Inorganic Prep

Parameter EPA Method Dilution Result Qual XQ Units MDL PQL Date Analyst
Total Hot Plate Digestion (1312)

Total Hot Plate M3010A ICP-MS

Total Hot Plate M3010A ICP-MS

Digestion (1312)

Total 312

Metals Analysis

	MOOAOD IOD									
Aluminum (1312)	M6010D ICP	1	0.539		*	mg/L	0.05	0.25	09/17/21 21:12	jlw
Aluminum, total (3050)	M6010D ICP	101	2410		*	mg/Kg	5.05	25.3	09/18/21 1:13	jlw
Antimony (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.002	09/21/21 13:37	bsu
Antimony, total (3050)	M6020B ICP-MS	505	<0.202	U	*	mg/Kg	0.202	1.01	09/17/21 14:59	bsu
Arsenic (1312)	M6020B ICP-MS	1	0.00191			mg/L	0.0002	0.001	09/21/21 13:37	bsu
Arsenic, total (3050)	M6020B ICP-MS	505	1.33			mg/Kg	0.101	0.505	09/17/21 14:59	bsu
Cadmium (1312)	M6020B ICP-MS	1	<0.00005	U	*	mg/L	0.00005	0.00025	09/21/21 13:37	bsu
Cadmium, total (3050)	M6020B ICP-MS	505	0.0795	В		mg/Kg	0.0253	0.126	09/17/21 14:59	bsu
Calcium (1312)	M6010D ICP	1	5.83			mg/L	0.1	0.5	09/17/21 21:12	jlw
Calcium, total (3050)	M6010D ICP	101	2890			mg/Kg	10.1	50.5	09/18/21 1:13	jlw
Copper (1312)	M6020B ICP-MS	1	0.00123	В		mg/L	0.0008	0.002	09/21/21 13:37	bsu
Copper, total (3050)	M6020B ICP-MS	505	5.10		*	mg/Kg	0.404	1.01	09/17/21 14:59	bsu
Iron (1312)	M6010D ICP	1	0.158		*	mg/L	0.06	0.15	09/17/21 21:12	jlw
Iron, total (3050)	M6010D ICP	101	4560		*	mg/Kg	6.06	15.2	09/18/21 1:13	jlw
Lead (1312)	M6020B ICP-MS	1	0.00039	В	*	mg/L	0.0001	0.0005	09/21/21 13:37	bsu
Lead, total (3050)	M6020B ICP-MS	505	3.72			mg/Kg	0.0505	0.253	09/17/21 14:59	bsu
Magnesium (1312)	M6010D ICP	1	0.36	В	*	mg/L	0.2	1	09/17/21 21:12	jlw
Magnesium, total (3050)	M6010D ICP	101	1080			mg/Kg	20.2	101	09/18/21 1:13	jlw
Manganese (1312)	M6010D ICP	1	<0.01	U	*	mg/L	0.01	0.05	09/17/21 21:12	jlw
Manganese, total (3050)	M6010D ICP	101	85.5		*	mg/Kg	1.01	5.05	09/18/21 1:13	jlw
Mercury (1312)	M7470A CVAA	1	<0.0002	U	*	mg/L	0.0002	0.001	09/16/21 12:50	mlh
Mercury by Direct Combustion AA	M7473 CVAAS	1	<2.61	U	*	ng/g	2.61	13.05	09/20/21 12:08	mlh
Molybdenum (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.1	09/17/21 21:12	jlw
Molybdenum, total (3050)	M6010D ICP	101	<2.02	U		mg/Kg	2.02	10.1	09/18/21 1:13	jlw
Nickel (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.001	09/21/21 13:37	bsu
Nickel, total (3050)	M6020B ICP-MS	505	2.43			mg/Kg	0.202	0.505	09/17/21 14:59	bsu
Selenium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.00025	09/21/21 13:37	bsu
Selenium, total (3050)	M6020B ICP-MS	505	<0.0505	U	*	mg/Kg	0.0505	0.126	09/17/21 14:59	bsu
Thallium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.0005	09/21/21 13:37	bsu
Thallium, total (3050)	M6020B ICP-MS	505	<0.0505	U		mg/Kg	0.0505	0.253	09/17/21 14:59	bsu
Zinc (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.05	09/17/21 21:12	jlw
Zinc, total (3050)	M6010D ICP	101	13.0		*	mg/Kg	2.02	5.05	09/18/21 1:13	jlw

REPIN.02.06.05.01

L68444-2109241335 Page 16 of 59

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: SCR-5

ACZ Sample ID: L68444-11

Date Sampled: 09/09/21 09:45

Date Received: 09/13/21

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	1	0.3	В	*	%	0.1	0.5	09/16/21 11:36	jpb
Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC) 1	0.3	В	*	%	0.1	0.5	09/16/21 11:36	jpb
Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	1	<0.1	U	*	%	0.1	0.5	09/16/21 11:36	jpb
Conductivity @25C	SM2510B									
Conductivity		1	0.261		*	mmhos/cm	0.001	0.01	09/17/21 0:00	zln
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
Temperature		1	21.1		*	С	0.1	0.1	09/17/21 0:00	zln
pH, Saturated Paste	EPA 600/2-78-054 section 3.2.2									
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
рН		1	8.0		*	units	0.1	0.1	09/17/21 0:00	zln
Solids, Percent	D2216-80	1	97.7		*	%	0.1	0.5	09/15/21 7:33	zln
Sulfur, total	ASTM D-4239-85C, LECO Furnace	: 1	0.01	В	*	%	0.01	0.1	09/16/21 9:52	jpb
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				09/14/21 9:23	mep
Digestion - Hot Plate	M3050B ICP-MS								09/16/21 15:16	mep
Digestion - Hot Plate	M3050B ICP								09/16/21 15:16	mep
Saturated Paste Extraction	USDA No. 60 (2)				*				09/16/21 13:17	zln
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2				*				09/15/21 8:50	jpb
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2				*				09/15/21 8:50	jpb
Synthetic Precip. Leaching Procedure	M1312								09/15/21 10:25	zln

Project ID:

Sample ID: SCR-0

ACZ Sample ID: *L68444-12*

Date Sampled: 09/09/21 13:30

Date Received: 09/13/21 Sample Matrix: Soil

Inorganic Prep

Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Total Hot Plate Digestion (1312)	M3010A ICP-MS							09/17/21 8:30	mfm
Total Hot Plate Digestion (1312)	M3010A ICP							09/16/21 17:04	kja

Metals Analysis

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	M6010D ICP	1	0.918		*	mg/L	0.05	0.25	09/17/21 21:16	jlw
Aluminum, total (3050)) M6010D ICP	100	3890		*	mg/Kg	5	25	09/18/21 1:17	jlw
Antimony (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.002	09/21/21 13:39	bsu
Antimony, total (3050)	M6020B ICP-MS	500	0.364	В	*	mg/Kg	0.2	1	09/17/21 15:04	bsu
Arsenic (1312)	M6020B ICP-MS	1	0.00174			mg/L	0.0002	0.001	09/21/21 13:39	bsu
Arsenic, total (3050)	M6020B ICP-MS	500	2.67			mg/Kg	0.1	0.5	09/17/21 15:04	bsu
Cadmium (1312)	M6020B ICP-MS	1	<0.00005	U	*	mg/L	0.00005	0.00025	09/21/21 13:39	bsu
Cadmium, total (3050)	M6020B ICP-MS	500	0.148			mg/Kg	0.025	0.125	09/17/21 15:04	bsu
Calcium (1312)	M6010D ICP	1	4.48			mg/L	0.1	0.5	09/17/21 21:16	jlw
Calcium, total (3050)	M6010D ICP	100	2100			mg/Kg	10	50	09/18/21 1:17	jlw
Copper (1312)	M6020B ICP-MS	1	0.00285			mg/L	8000.0	0.002	09/21/21 13:39	bsu
Copper, total (3050)	M6020B ICP-MS	500	12.1		*	mg/Kg	0.4	1	09/17/21 15:04	bsu
Iron (1312)	M6010D ICP	1	0.468		*	mg/L	0.06	0.15	09/17/21 21:16	jlw
Iron, total (3050)	M6010D ICP	100	8260		*	mg/Kg	6	15	09/18/21 1:17	jlw
Lead (1312)	M6020B ICP-MS	1	0.00082		*	mg/L	0.0001	0.0005	09/21/21 13:39	bsu
Lead, total (3050)	M6020B ICP-MS	500	8.60			mg/Kg	0.05	0.25	09/17/21 15:04	bsu
Magnesium (1312)	M6010D ICP	1	0.37	В	*	mg/L	0.2	1	09/17/21 21:16	jlw
Magnesium, total (3050)	M6010D ICP	100	1460			mg/Kg	20	100	09/18/21 1:17	jlw
Manganese (1312)	M6010D ICP	1	<0.01	U	*	mg/L	0.01	0.05	09/17/21 21:16	jlw
Manganese, total (3050)	M6010D ICP	100	119		*	mg/Kg	1	5	09/18/21 1:17	jlw
Mercury (1312)	M7470A CVAA	1	<0.0002	U	*	mg/L	0.0002	0.001	09/16/21 12:51	mlh
Mercury by Direct Combustion AA	M7473 CVAAS	1	5.53	В	*	ng/g	2.4	12	09/20/21 12:16	mlh
Molybdenum (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.1	09/17/21 21:16	jlw
Molybdenum, total (3050)	M6010D ICP	100	<2	U		mg/Kg	2	10	09/18/21 1:17	jlw
Nickel (1312)	M6020B ICP-MS	1	0.00042	В	*	mg/L	0.0004	0.001	09/21/21 13:39	bsu
Nickel, total (3050)	M6020B ICP-MS	500	4.03			mg/Kg	0.2	0.5	09/17/21 15:04	bsu
Selenium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.00025	09/21/21 13:39	bsu
Selenium, total (3050)	M6020B ICP-MS	500	< 0.05	U	*	mg/Kg	0.05	0.125	09/17/21 15:04	bsu
Thallium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.0005	09/21/21 13:39	bsu
Thallium, total (3050)	M6020B ICP-MS	500	<0.05	U		mg/Kg	0.05	0.25	09/17/21 15:04	bsu
Zinc (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.05	09/17/21 21:16	jlw
Zinc, total (3050)	M6010D ICP	100	22.5		*	mg/Kg	2	5	09/18/21 1:17	jlw

REPIN.02.06.05.01

L68444-2109241335 Page 18 of 59

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: SCR-0

ACZ Sample ID: L68444-12

Date Sampled: 09/09/21 13:30

Date Received: 09/13/21

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	1	0.1	В	*	%	0.1	0.5	09/16/21 11:48	jpb
Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC) 1	0.1	В	*	%	0.1	0.5	09/16/21 11:48	jpb
Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	1	<0.1	U	*	%	0.1	0.5	09/16/21 11:48	jpb
Conductivity @25C	SM2510B									
Conductivity		1	0.225		*	mmhos/cm	0.001	0.01	09/17/21 0:00	zln
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
Temperature		1	21.0		*	С	0.1	0.1	09/17/21 0:00	zln
pH, Saturated Paste	EPA 600/2-78-054 section 3.2.2									
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
рН		1	8.0		*	units	0.1	0.1	09/17/21 0:00	zln
Solids, Percent	D2216-80	1	96.5		*	%	0.1	0.5	09/15/21 8:46	zln
Sulfur, total	ASTM D-4239-85C, LECO Furnace	1	0.01	В	*	%	0.01	0.1	09/16/21 9:56	jpb
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				09/14/21 9:26	mep
Digestion - Hot Plate	M3050B ICP-MS								09/16/21 15:38	mep
Digestion - Hot Plate	M3050B ICP								09/16/21 15:38	mep
Saturated Paste Extraction	USDA No. 60 (2)				*				09/16/21 13:18	zln
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2				*				09/15/21 8:55	jpb
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2				*				09/15/21 8:55	jpb
Synthetic Precip. Leaching Procedure	M1312								09/15/21 11:26	zln

Arizona license number: AZ0102

L68444-2109241335 Page 19 of 59

Project ID:

Sample ID: SCR-SJ

ACZ Sample ID: L68444-13

Date Sampled: 09/09/21 12:50

Date Received: 09/13/21

Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date .	Analyst
Total Hot Plate	M3010A ICP-MS								09/17/21 8:30	mfm
Digestion (1312)	M0040A 10D								00/40/04 47 05	Let -
Total Hot Plate Digestion (1312)	M3010A ICP								09/16/21 17:25	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	M6010D ICP	1	0.168	В	*	mg/L	0.05	0.25	09/17/21 21:20	jlw
Aluminum, total (3050)	M6010D ICP	101	9730		*	mg/Kg	5.05	25.3	09/18/21 1:21	jlw
Antimony (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.002	09/21/21 13:41	bsu
Antimony, total (3050)	M6020B ICP-MS	505	0.423	В	*	mg/Kg	0.202	1.01	09/17/21 15:06	bsu
Arsenic (1312)	M6020B ICP-MS	1	0.00299			mg/L	0.0002	0.001	09/21/21 13:41	bsu
Arsenic, total (3050)	M6020B ICP-MS	505	5.74			mg/Kg	0.101	0.505	09/17/21 15:06	bsu
Cadmium (1312)	M6020B ICP-MS	1	<0.00005	U	*	mg/L	0.00005	0.00025	09/21/21 13:41	bsu
Cadmium, total (3050)	M6020B ICP-MS	505	0.349			mg/Kg	0.0253	0.126	09/17/21 15:06	bsu
Calcium (1312)	M6010D ICP	1	5.78			mg/L	0.1	0.5	09/17/21 21:20	jlw
Calcium, total (3050)	M6010D ICP	101	6880			mg/Kg	10.1	50.5	09/18/21 1:21	jlw
Copper (1312)	M6020B ICP-MS	1	0.00248			mg/L	0.0008	0.002	09/21/21 13:41	bsu
Copper, total (3050)	M6020B ICP-MS	505	30.2		*	mg/Kg	0.404	1.01	09/17/21 15:06	bsu
Iron (1312)	M6010D ICP	1	0.062	В	*	mg/L	0.06	0.15	09/17/21 21:20	jlw
Iron, total (3050)	M6010D ICP	101	12800		*	mg/Kg	6.06	15.2	09/18/21 1:21	jlw
Lead (1312)	M6020B ICP-MS	1	0.00015	В	*	mg/L	0.0001	0.0005	09/21/21 13:41	bsu
Lead, total (3050)	M6020B ICP-MS	505	15.8			mg/Kg	0.0505	0.253	09/17/21 15:06	bsu
Magnesium (1312)	M6010D ICP	1	0.49	В	*	mg/L	0.2	1	09/17/21 21:20	jlw
Magnesium, total (3050)	M6010D ICP	101	3000			mg/Kg	20.2	101	09/18/21 1:21	jlw
Manganese (1312)	M6010D ICP	1	<0.01	U	*	mg/L	0.01	0.05	09/17/21 21:20	jlw
Manganese, total (3050)	M6010D ICP	101	358		*	mg/Kg	1.01	5.05	09/18/21 1:21	jlw
Mercury (1312)	M7470A CVAA	1	<0.0002	U	*	mg/L	0.0002	0.001	09/16/21 12:52	mlh
Mercury by Direct Combustion AA	M7473 CVAAS	1	4.99	В	*	ng/g	2.25	11.25	09/20/21 12:24	mlh
Molybdenum (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.1	09/17/21 21:20	jlw
Molybdenum, total (3050)	M6010D ICP	101	<2.02	U		mg/Kg	2.02	10.1	09/18/21 1:21	jlw
Nickel (1312)	M6020B ICP-MS	1	<0.0004	U	*	mg/L	0.0004	0.001	09/21/21 13:41	bsu
Nickel, total (3050)	M6020B ICP-MS	505	7.16			mg/Kg	0.202	0.505	09/17/21 15:06	bsu
Selenium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.00025	09/21/21 13:41	bsu
Selenium, total (3050)	M6020B ICP-MS	505	0.113	В	*	mg/Kg	0.0505	0.126	09/17/21 15:06	bsu
Thallium (1312)	M6020B ICP-MS	1	<0.0001	U	*	mg/L	0.0001	0.0005	09/21/21 13:41	bsu
Thallium, total (3050)	M6020B ICP-MS	505	0.120	В		mg/Kg	0.0505	0.253	09/17/21 15:06	bsu
Zinc (1312)	M6010D ICP	1	<0.02	U	*	mg/L	0.02	0.05	09/17/21 21:20	jlw
Zinc, total (3050)	M6010D ICP	101	47.5		*	mg/Kg	2.02	5.05	09/18/21 1:21	jlw

REPIN.02.06.05.01

L68444-2109241335 Page 20 of 59

^{*} Please refer to Qualifier Reports for details.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Hudbay Minerals

ACZ Sample ID: **L68444-13**

Project ID:

Date Sampled: 09/09/21 12:50
Date Received: 09/13/21

Sample ID: SCR-SJ

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	1	0.5		*	%	0.1	0.5	09/16/21 12:00	jpb
Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC	1	0.2	В	*	%	0.1	0.5	09/16/21 12:00	jpb
Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	1	0.3	В	*	%	0.1	0.5	09/16/21 12:00	jpb
Conductivity @25C	SM2510B									
Conductivity		1	0.699		*	mmhos/cm	0.001	0.01	09/17/21 0:00	zln
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
Temperature		1	21.0		*	С	0.1	0.1	09/17/21 0:00	zln
pH, Saturated Paste	EPA 600/2-78-054 section 3.2.2									
Max Particle Size		1	2000		*	um			09/17/21 0:00	zln
рН		1	7.8		*	units	0.1	0.1	09/17/21 0:00	zln
Solids, Percent	D2216-80	1	97.2		*	%	0.1	0.5	09/15/21 10:00	zln
Sulfur, total	ASTM D-4239-85C, LECO Furnace	1	0.02	В	*	%	0.01	0.1	09/16/21 10:00	jpb
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				09/14/21 9:30	mep
Digestion - Hot Plate	M3050B ICP-MS								09/16/21 16:00	mep
Digestion - Hot Plate	M3050B ICP								09/16/21 16:00	mep
Saturated Paste Extraction	USDA No. 60 (2)				*				09/16/21 13:20	zln
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2				*				09/15/21 9:00	jpb
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2				*				09/15/21 9:00	jpb
Synthetic Precip. Leaching Procedure	M1312								09/15/21 13:29	zln

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report H	pader	Evnl	lanat	ione
керопп	eauer	EXP	ıanaı	10115

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit unless omitted or equal to the PQL (see comment #5).

Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit. Synonymous with the EPA term "minimum level".

QC True Value of the Control Sample or the amount added to the Spike

Rec Recovered amount of the true value or spike added, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

	\sim
QC Sample Typ	277

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- L Target analyte response was below the laboratory defined negative threshold.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (4) EPA SW-846. Test Methods for Evaluating Solid Waste.
- (5) Standard Methods for the Examination of Water and Wastewater.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis
- (4) An asterisk in the "XQ" column indicates there is an extended qualifier and/or certification qualifier associated with the result.
- (5) If the MDL equals the PQL or the MDL column is omitted, the PQL is the reporting limit.

For a complete list of ACZ's Extended Qualifiers, please click:

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

L68444-2109241335 Page 22 of 59

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Aluminum (1312))		M6010D I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527478													
WG527478ICV	ICV	09/17/21 19:33	II210823-1	2		1.905	mg/L	95	90	110			
WG527478ICB	ICB	09/17/21 19:37				U	mg/L		-0.15	0.15			
WG527145PBS	PBS	09/17/21 20:01				U	mg/L		-0.15	0.15			
WG527145LFB1	LFB	09/17/21 20:05	II210910-2	1.0008		.968	mg/L	97	80	120			
L68443-01MS	MS	09/17/21 20:13	II210910-2	1.0008	.13	1.159	mg/L	103	75	125			
L68443-01MSD	MSD	09/17/21 20:17	II210910-2	1.0008	.13	1.151	mg/L	102	75	125	1	20	
L68444-01DUP	DUP	09/17/21 20:33			.343	.154	mg/L				76	20	RA
Aluminum, total	(3050)		M6010D I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527480													
WG527480ICV	ICV	09/17/21 23:35	II210823-1	2		2.047	mg/L	102	90	110			
WG527480ICB	ICB	09/17/21 23:39				U	mg/L		-0.15	0.15			
WG527218PBS	PBS	09/18/21 0:03				U	mg/Kg		-15	15			
WG527218LCSS	LCSS	09/18/21 0:07	PCN63759	8130		8806	mg/Kg		3920	12300			
WG527218LCSSD	LCSSD	09/18/21 0:11	PCN63759	8130		8820	mg/Kg		3920	12300	0	20	
L68443-01MS	MS	09/18/21 0:18	II210910-2	103.0824	23500	29911.2	mg/Kg	6219	75	125			МЗ
L68443-01MSD	MSD	09/18/21 0:23	II210910-2	103.0824	23500	29458	mg/Kg	5780	75	125	2	20	М3
Antimony (1312)			M6020B I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527659													
WG527659ICV	ICV	09/21/21 12:46	MS210727-2	.0201		.02015	mg/L	100	90	110			
WG527659ICB	ICB	09/21/21 12:48				U	mg/L		-0.0012	0.0012			
WG527145PBS	PBS	09/21/21 12:59				U	mg/L		-0.0012	0.0012			
L68443-02MS	MS	09/21/21 13:06	MS210827-2	.01	U	.00987	mg/L	99	75	125			
L68443-02MSD	MSD	09/21/21 13:08	MS210827-2	.01	U	.0098	mg/L	98	75	125	1	20	
L68444-01DUP	DUP	09/21/21 13:17			U	U	mg/L				0	20	RA
WG527145LFB2	LFB	09/21/21 13:19	MS210827-2	.01		.00966	mg/L	97	80	120			
Antimony, total (3050)		M6020B I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527473													
WG527473ICV	ICV	09/17/21 14:14	MS210727-2	.0201		.01943	mg/L	97	90	110			
	ICB	09/17/21 14:16				U	mg/L		-0.0012	0.0012			
WG527473ICB						U	mg/Kg		-0.6	0.6			
	PBS	09/17/21 14:25											
WG527218PBS			PCN63759	134		90.46569	mg/Kg		4.56	264			
WG527218PBS WG527218LCSS	LCSS	09/17/21 14:27	PCN63759 PCN63759	134 134		90.46569 88.99535			4.56 4.56	264 264	2	20	
WG527473ICB WG527218PBS WG527218LCSS WG527218LCSSD L68444-01MS	LCSS		PCN63759 PCN63759 MS210826-5	134 134 5.05	.368	90.46569 88.99535 1.80944		29	4.56 4.56 75	264 264 125	2	20	M2

L68444-2109241335 Page 23 of 59

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Arsenic (1312)			M6020B I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527659	. ,	7,v		4.0			· · · · · ·			орро.			٠, ١, ١, ١
	10)/	00/04/04 40:46	MC040707 0	0E		05007	ma/l	100	00	110			
WG527659ICV	ICV	09/21/21 12:46	MS210727-2	.05		.05007	mg/L	100	90	110			
WG527659ICB	ICB PBS	09/21/21 12:48				U U	mg/L mg/L		-0.0006 -0.0006	0.0006			
WG527145PBS	MS	09/21/21 12:59 09/21/21 13:06	MC240027 2	05005	00150		mg/L	OF		0.0006			
L68443-02MS L68443-02MSD	MSD	09/21/21 13:08	MS210827-2 MS210827-2	.05005 .05005	.00152 .00152	.04886 .04891	mg/L	95 95	75 75	125 125	0	20	
L68444-01DUP	DUP	09/21/21 13:06	WISZ 10621-2	.03003	.00132	.00306	mg/L	95	75	123	10	20	
	LFB	09/21/21 13:17	MS210827-2	.05005	.00337	.00300	mg/L	94	80	120	10	20	
WG527145LFB2	LFD	09/21/21 13:19	IVISZ 10021-2	.05005		.047	IIIg/L	94	00	120			
Arsenic, total (30)50)		M6020B I	CP-MS									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527473													
WG527473ICV	ICV	09/17/21 14:14	MS210727-2	.05		.05023	mg/L	100	90	110			
WG527473ICB	ICB	09/17/21 14:16				U	mg/L		-0.0006	0.0006			
WG527218PBS	PBS	09/17/21 14:25				U	mg/Kg		-0.3	0.3			
WG527218LCSS	LCSS	09/17/21 14:27	PCN63759	156		152.25262	mg/Kg		129	183			
WG527218LCSSD	LCSSD	09/17/21 14:29	PCN63759	156		154.30212	mg/Kg		129	183	1	20	
L68444-01MS	MS	09/17/21 14:42	MS210826-5	25.27525	4.63	27.04534	mg/Kg	89	75	125			
L68444-01MSD	MSD	09/17/21 14:44	MS210826-5	25.27525	4.63	30.72935	mg/Kg	103	75	125	13	20	
Cadmium (1312)			M6020B I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527659													
WG527659ICV	ICV	09/21/21 12:46	MS210727-2	.05		.049871	mg/L	100	90	110			
WG527659ICB	ICB	09/21/21 12:48				U	mg/L		-0.00015	0.00015			
WG527145PBS	PBS	09/21/21 12:59				U	mg/L		-0.00015	0.00015			
L68443-02MS	MS	09/21/21 13:06	MS210827-2	.05005	U	.04574	mg/L	91	75	125			
L68443-02MSD	MSD	09/21/21 13:08	MS210827-2	.05005	U	.04564	mg/L	91	75	125	0	20	
L68444-01DUP	DUP	09/21/21 13:17			U	U	mg/L				0	20	RA
WG527145LFB2	LFB	09/21/21 13:19	MS210827-2	.05005		.044741	mg/L	89	80	120			
Cadmium, total (3050)		M6020B I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527473													
WG527473ICV	ICV	09/17/21 14:14	MS210727-2	.05		.051118	mg/L	102	90	110			
WG527473ICB	ICB	09/17/21 14:16		.50		U	mg/L	. 32	-0.00015	0.00015			
WG527218PBS	PBS	09/17/21 14:25				U	mg/Kg		-0.075	0.075			
WG527218LCSS	LCSS	09/17/21 14:27	PCN63759	137		128.25744			113	160			
352.2.50200												00	
WG527218I CSSD	LCSSD	09/17/21 14:29	PCN63759	1,37		128.9.3000	t IIIu/Nu		11.5	טמן	7	20	
WG527218LCSSD L68444-01MS	LCSSD MS	09/17/21 14:29 09/17/21 14:42	PCN63759 MS210826-5	137 25.27525	.55	128.93060 24.938178		96	113 75	160 125	1	20	

L68444-2109241335 Page 24 of 59

(800) 334-5493

Hudbay Minerals ACZ Project ID: L68444

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low

Calcium (1312)			M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527478													
WG527478ICV	ICV	09/17/21 19:33	II210823-1	100		98.62	mg/L	99	90	110			
WG527478ICB	ICB	09/17/21 19:37				U	mg/L		-0.3	0.3			
WG527145PBS	PBS	09/17/21 20:01				U	mg/L		-0.3	0.3			
WG527145LFB1	LFB	09/17/21 20:05	II210910-2	67.98972		68.14	mg/L	100	80	120			
L68443-01MS	MS	09/17/21 20:13	II210910-2	67.98972	14.3	82.75	mg/L	101	75	125			
L68443-01MSD	MSD	09/17/21 20:17	II210910-2	67.98972	14.3	82.74	mg/L	101	75	125	0	20	
_68444-01DUP	DUP	09/17/21 20:33			8.9	9.77	mg/L				9	20	
Calcium, total (3	050)		M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527480													
WG527480ICV	ICV	09/17/21 23:35	II210823-1	100		101.2	mg/L	101	90	110			
WG527480ICB	ICB	09/17/21 23:39				U	mg/L		-0.3	0.3			
WG527218PBS	PBS	09/18/21 0:03				U	mg/Kg		-30	30			
WG527218LCSS	LCSS	09/18/21 0:07	PCN63759	4760		4550	mg/Kg		3890	5640			
WG527218LCSSD		09/18/21 0:11	PCN63759	4760		5017	mg/Kg		3890	5640	10	20	
_68443-01MS	MS	09/18/21 0:18	II210910-2	7002.94116	9600	15645.7	mg/Kg	86	75	125	10	20	
_68443-01MSD	MSD	09/18/21 0:10	II210910-2	7002.94116	9600	15975.3	mg/Kg	91	75 75	125	2	20	
Carbon, total (TO	C)		ASA No.	9 29-2.2.4 C	ombustic	on/IR							
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527283													
NG527283PBS	PBS	09/16/21 9:00				U	%		-0.3	0.3			
			DONGOAFE	4.05				101					
WG527283LCSS	LCSS	09/16/21 9:12	PCN63155	4.35	0.0	4.4	%	101	80	120		00	
_68443-01DUP	DUP	09/16/21 9:36			2.9	3	%				3	20	
Carbon, total inc	organic (TIC)	ASA No.	9 29-2.2.4 (calc TC -	· TOC)							
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527283													
WG527283PBS	PBS	09/16/21 9:00				U	%		-0.3	0.3			
_68443-01DUP	DUP	09/16/21 9:36			.6	.8	%				29	20	RA
Carbon, total orç	ganic (TC	DC)	ASA No.	9 29-2.2.4 C	ombustic	on/IR							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527283													
WG527283PBS	PBS	09/16/21 9:00				U	%		-0.3	0.3			
_68443-01DUP	DUP	09/16/21 9:36			2.3	2.2	%				4	20	
Conductivity @2	5C		SM2510	В									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG527388													
L68444-08DUP	DUP	09/17/21 4:18			.312	.269	mmhos/cm				15	20	
		JUI 11/2 T. 10			.012	.200							

L68444-2109241335 Page 25 of 59

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Copper (1312)			M6020B I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527659													
WG527659ICV	ICV	09/21/21 12:46	MS210727-2	.05		.05046	mg/L	101	90	110			
WG527659ICB	ICB	09/21/21 12:48				U	mg/L		-0.0024	0.0024			
WG527145PBS	PBS	09/21/21 12:59				U	mg/L		-0.0024	0.0024			
L68443-02MS	MS	09/21/21 13:06	MS210827-2	.05	.0223	.06903	mg/L	93	75	125			
L68443-02MSD	MSD	09/21/21 13:08	MS210827-2	.05	.0223	.06844	mg/L	92	75	125	1	20	
L68444-01DUP	DUP	09/21/21 13:17			.0156	.01388	mg/L				12	20	
WG527145LFB2	LFB	09/21/21 13:19	MS210827-2	.05		.04668	mg/L	93	80	120			
Copper, total (30	50)		M6020B I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527473													
WG527473ICV	ICV	09/17/21 14:14	MS210727-2	.05		.05238	mg/L	105	90	110			
WG527473ICB	ICB	09/17/21 14:16				U	mg/L		-0.0024	0.0024			
WG527218PBS	PBS	09/17/21 14:25				U	mg/Kg		-1.2	1.2			
WG527218LCSS	LCSS	09/17/21 14:27	PCN63759	54.9		53.36907	mg/Kg		46.1	63.6			
WG527218LCSSD	LCSSD		PCN63759	54.9		53.20929	mg/Kg		46.1	63.6	0	20	
L68444-01MS	MS	09/17/21 14:42	MS210826-5	25.25	284	309.81021	mg/Kg	102	75	125			
L68444-01MSD	MSD	09/17/21 14:44	MS210826-5	25.25	284	299.15211	mg/Kg	60	75	125	4	20	МЗ
Iron (1312)			M6010D I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527478													
WG527478ICV	ICV	09/17/21 19:33	II210823-1	2		1.897	mg/L	95	90	110			
WG527478ICB	ICB	09/17/21 19:37				U	mg/L		-0.18	0.18			
WG527145PBS	PBS	09/17/21 20:01				U	mg/L		-0.18	0.18			
WG527145LFB1	LFB	09/17/21 20:05	II210910-2	1.0001		.99	mg/L	99	80	120			
L68443-01MS	MS	09/17/21 20:13	II210910-2	1.0001	.247	1.079	mg/L	83	75	125			
L68443-01MSD	MSD	09/17/21 20:17	II210910-2	1.0001	.247	1.085	mg/L	84	75	125	1	20	
L68444-01DUP	DUP	09/17/21 20:33			.215	.107	mg/L				67	20	RA
Iron, total (3050)			M6010D I	CP									
	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
ACZ ID	71.												
ACZ ID WG527480	31.												
WG527480	ICV	09/17/21 23:35	II210823-1	2		2.007	mg/L	100	90	110			
WG527480 WG527480ICV	ICV	09/17/21 23:35 09/17/21 23:39	II210823-1	2			mg/L mg/L	100					
WG527480 WG527480ICV WG527480ICB	ICV ICB	09/17/21 23:39	II210823-1	2		U	mg/L	100	-0.18	0.18			
WG527480 WG527480ICV WG527480ICB WG527218PBS	ICV ICB PBS	09/17/21 23:39 09/18/21 0:03				U U	mg/L mg/Kg	100	-0.18 -18	0.18 18			
WG527480 WG527480ICV WG527480ICB WG527218PBS WG527218LCSS	ICV ICB PBS LCSS	09/17/21 23:39 09/18/21 0:03 09/18/21 0:07	PCN63759	14100		U U 15400	mg/L mg/Kg mg/Kg	100	-0.18 -18 8470	0.18 18 19700	2	20	
WG527480 WG527480ICV WG527480ICB WG527218PBS WG527218LCSS WG527218LCSSD L68443-01MS	ICV ICB PBS LCSS	09/17/21 23:39 09/18/21 0:03			22000	U U	mg/L mg/Kg	100	-0.18 -18	0.18 18	2	20	M3

L68444-2109241335 Page 26 of 59

RCC-CW013871

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

limits are in % Re		iii io riaii, tiio riig											
Lead (1312)			M6020B	ICP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527659													
WG527659ICV	ICV	09/21/21 12:46	MS210727-2	.05		.05008	mg/L	100	90	110			
WG527659ICB	ICB	09/21/21 12:48				U	mg/L		-0.0003	0.0003			
WG527145PBS	PBS	09/21/21 12:59				U	mg/L		-0.0003	0.0003			
L68443-02MS	MS	09/21/21 13:06	MS210827-2	.05005	.00012	.0473	mg/L	94	75	125			
L68443-02MSD	MSD	09/21/21 13:08	MS210827-2	.05005	.00012	.04716	mg/L	94	75	125	0	20	
L68444-01DUP	DUP	09/21/21 13:17			.0003	.00015	mg/L				67	20	RA
WG527145LFB2	LFB	09/21/21 13:19	MS210827-2	.05005		.04583	mg/L	92	80	120			
Lead, total (3050)		M6020B	ICP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527473													
WG527473ICV	ICV	09/17/21 14:14	MS210727-2	.05		.05128	mg/L	103	90	110			
WG527473ICB	ICB	09/17/21 14:16				U	mg/L		-0.0003	0.0003			
WG527218PBS	PBS	09/17/21 14:25				U	mg/Kg		-0.15	0.15			
WG527218LCSS	LCSS	09/17/21 14:27	PCN63759	130		131.86256	mg/Kg		107	152			
WG527218LCSSD	LCSSD	09/17/21 14:29	PCN63759	130		133.56237	mg/Kg		107	152	1	20	
L68444-01MS	MS	09/17/21 14:42	MS210826-5	25.27525	17.9	43.82527	mg/Kg	103	75	125			
L68444-01MSD	MSD	09/17/21 14:44	MS210826-5	25.27525	17.9	48.92623	mg/Kg	123	75	125	11	20	
Magnesium (131	2)		M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527478													
WG527478ICV	ICV	09/17/21 19:33	II210823-1	100		95.75	mg/L	96	90	110			
WG527478ICB	ICB	09/17/21 19:37				U	mg/L		-0.6	0.6			
WG527145PBS	PBS	09/17/21 20:01				U	mg/L		-0.6	0.6			
WG527145LFB1	LFB	09/17/21 20:05	II210910-2	49.99828			mg/L	96	80	120			
L68443-01MS						48.03	mg/ L	50					
L00443-0 HVIS	MS	09/17/21 20:13	II210910-2	49.99828	1.39	48.03 49.8	mg/L	97	75	125			
	MS MSD	09/17/21 20:13 09/17/21 20:17			1.39 1.39		-			125 125	0	20	
L68443-01MSD			II210910-2	49.99828		49.8	mg/L	97	75		0 5	20 20	RA
L68443-01MSD L68444-01DUP	MSD DUP	09/17/21 20:17	II210910-2	49.99828 49.99828	1.39	49.8 49.79	mg/L	97	75				RA
L68443-01MSD L68444-01DUP Magnesium, tota	MSD DUP	09/17/21 20:17	II210910-2 II210910-2	49.99828 49.99828	1.39	49.8 49.79	mg/L	97	75				RA Qual
L68443-01MSD L68444-01DUP Magnesium, tota	MSD DUP al (3050)	09/17/21 20:17 09/17/21 20:33	II210910-2 II210910-2 M6010D	49.99828 49.99828	1.39 .96	49.8 49.79 1.01	mg/L mg/L mg/L	97 97	75 75	125	5	20	
L68443-01MSD L68444-01DUP Magnesium, tota ACZ ID WG527480	MSD DUP al (3050)	09/17/21 20:17 09/17/21 20:33	II210910-2 II210910-2 M6010D	49.99828 49.99828	1.39 .96	49.8 49.79 1.01	mg/L mg/L mg/L	97 97	75 75	125	5	20	
L68443-01MSD L68444-01DUP Magnesium, tota ACZ ID WG527480 WG527480ICV	MSD DUP al (3050) Type	09/17/21 20:17 09/17/21 20:33 Analyzed	II210910-2 II210910-2 M6010D PCN/SCN	49.99828 49.99828 ICP	1.39 .96	49.8 49.79 1.01	mg/L mg/L mg/L	97 97 Rec%	75 75 Lower	125 Upper	5	20	
L68443-01MSD L68444-01DUP Magnesium, tota ACZ ID WG527480 WG527480ICV WG527480ICB	MSD DUP al (3050) Type	09/17/21 20:17 09/17/21 20:33 Analyzed 09/17/21 23:35	II210910-2 II210910-2 M6010D PCN/SCN	49.99828 49.99828 ICP	1.39 .96	49.8 49.79 1.01 Found	mg/L mg/L mg/L Units	97 97 Rec%	75 75 Lower	125 Upper	5	20	
L68443-01MSD L68444-01DUP Magnesium, tota ACZ ID WG527480 WG527480ICV WG527480ICB WG527218PBS	MSD DUP al (3050) Type ICV ICB	09/17/21 20:17 09/17/21 20:33 Analyzed 09/17/21 23:35 09/17/21 23:39	II210910-2 II210910-2 M6010D PCN/SCN	49.99828 49.99828 ICP	1.39 .96	49.8 49.79 1.01 Found	mg/L mg/L mg/L Units mg/L mg/L	97 97 Rec%	75 75 Lower 90 -0.6	125 Upper 110 0.6	5	20	
L68443-01MSD L68444-01DUP Magnesium, tota	MSD DUP al (3050) Type ICV ICB PBS	09/17/21 20:17 09/17/21 20:33 Analyzed 09/17/21 23:35 09/17/21 23:39 09/18/21 0:03 09/18/21 0:07	II210910-2 II210910-2 M6010D PCN/SCN II210823-1	49.99828 49.99828 ICP QC	1.39 .96	49.8 49.79 1.01 Found	mg/L mg/L Units mg/L mg/L mg/L	97 97 Rec%	75 75 Lower 90 -0.6 -60	125 Upper 110 0.6 60	5	20	
L68443-01MSD L68444-01DUP Magnesium, total ACZ ID WG527480 WG527480ICV WG527480ICB WG527218PBS WG527218LCSS	MSD DUP II (3050) Type ICV ICB PBS LCSS	09/17/21 20:17 09/17/21 20:33 Analyzed 09/17/21 23:35 09/17/21 23:39 09/18/21 0:03 09/18/21 0:07	II210910-2 II210910-2 M6010D PCN/SCN II210823-1 PCN63759	49.99828 49.99828 ICP QC 100	1.39 .96	49.8 49.79 1.01 Found 98.2 U U 2257	mg/L mg/L Units mg/L mg/L mg/Kg mg/Kg	97 97 Rec%	75 75 Lower 90 -0.6 -60 1760	125 Upper 110 0.6 60 2880	5 RPD	20 Limit	

L68444-2109241335 Page 27 of 59

RCC-CW013872

NOTE: If the Rec		nn is null, the hig	gh/low limits ar	e in the sa	ame units	as the re	esult. If t	he Rec	% column	is not null,	then th	e high/ld	ow
Manganese (131	2)		M6010D I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527478													
WG527478ICV	ICV	09/17/21 19:33	II210823-1	2		1.899	mg/L	95	90	110			
WG527478ICB	ICB	09/17/21 19:37				U	mg/L		-0.03	0.03			
WG527145PBS	PBS	09/17/21 20:01				U	mg/L		-0.03	0.03			
WG527145LFB1	LFB	09/17/21 20:05	II210910-2	.5005		.482	mg/L	96	80	120			
L68443-01MS	MS	09/17/21 20:13	II210910-2	.5005	U	.483	mg/L	97	75	125			
L68443-01MSD	MSD	09/17/21 20:17	II210910-2	.5005	U	.484	mg/L	97	75	125	0	20	
L68444-01DUP	DUP	09/17/21 20:33			U	U	mg/L				0	20	RA
Manganese, tota	I (3050)		M6010D I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527480													
WG527480ICV	ICV	09/17/21 23:35	II210823-1	2		1.996	mg/L	100	90	110			
WG527480ICB	ICB	09/17/21 23:39				U	mg/L		-0.03	0.03			
WG527218PBS	PBS	09/18/21 0:03				1.14	mg/Kg		-3	3			
WG527218LCSS	LCSS	09/18/21 0:07	PCN63759	269		268.8	mg/Kg		221	317			
WG527218LCSSD	LCSSD	09/18/21 0:11	PCN63759	269		323.2	mg/Kg		221	317	18	20	RL
L68443-01MS	MS	09/18/21 0:18	II210910-2	51.5515	782	768.483	mg/Kg	-26	75	125			M3
L68443-01MSD	MSD	09/18/21 0:23	II210910-2	51.5515	782	764.981	mg/Kg	-33	75	125	0	20	М3
Mercury (1312)			M7470A (CVAA									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527320													
WG527320ICV	ICV	09/16/21 11:59	HG210913-3	.00501		.00513	mg/L	102	95	105			
WG527320ICB	ICB	09/16/21 12:00				U	mg/L		-0.0002	0.0002			
WG527317													
WG527145PBS	PBS	09/16/21 12:36				U	mg/L		-0.0006	0.0006			
WG527145LFB1	LFB	09/16/21 12:37	HG210913-6	.002002		.00198	mg/L	99	85	115			
L68443-01MS	MS	09/16/21 12:39	HG210913-6	.002002	U	.00186	mg/L	93	85	115			
L68443-01MSD	MSD	09/16/21 12:40	HG210913-6	.002002	U	.00189	mg/L	94	85	115	2	20	
L68444-01DUP	DUP	09/16/21 12:41			U	U	mg/L				0	20	RA
Mercury by Direc	t Comb	ustion AA	M7473 C\	/AAS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG520390													
WG520390ICV4	ICV	06/04/21 12:43	HG210603-2	10000		10200	ng/g	102	90	110			
WG527524													
WG527524ICV1	ICV	09/20/21 9:22	HG210603-4	100		99.8	ng/g	100	90	110			
WG527524ICV2	ICV	09/20/21 9:29	HG210603-4	100		103	ng/g	103	90	110			
WG527524ICV3	ICV	09/20/21 9:36	HG210915-1	1000		1050	ng/g	105	90	110			
WG527524ICV4	ICV	09/20/21 9:43	HG210603-2	10000		10300	ng/g	103	90	110			
WG527524PBS	PBS	09/20/21 9:59				U	ng/g		-4.77	4.77			
WG527524LCSS	LCSS	09/20/21 10:07	PCN60050	90		83.7	ng/g		80	120			
WG527524LCSSD	LCSSD	09/20/21 10:15	PCN60050	90		83.9	ng/g		80	120	0	20	
L68238-01DUP	DUP	09/20/21 10:32			30.1	67.3	ng/g				76	20	RA
L68444-01MS	MS	09/20/21 10:56	HG210915-1				ng/g	96	80	120			
L68444-02DUP	DUP	09/20/21 11:12			33.8	33.7	ng/g				0	20	

L68444-2109241335 Page 28 of 59

Molyhdonum (43	212)		M6010D I	CD									
Molybdenum (13 ACZ ID		Analyzad	PCN/SCN	QC QC	Sample	Found	Units	Rec%	Lower	Hanar	RPD	Limit	Qual
	Type	Analyzed	FCN/SCN	QC	Sample	Found	Ullits	Nec /	Lower	Upper	KFD	Lillin	Quai
WG527478													
WG527478ICV	ICV	09/17/21 19:33	II210823-1	2		1.95	mg/L	98	90	110			
WG527478ICB	ICB	09/17/21 19:37				U	mg/L		-0.06	0.06			
WG527145PBS	PBS	09/17/21 20:01				U	mg/L		-0.06	0.06			
WG527145LFB1	LFB	09/17/21 20:05	II210910-2	.501		.478	mg/L	95	80	120			
L68443-01MS	MS	09/17/21 20:13	II210910-2	.501	U	.483	mg/L	96	75	125			
L68443-01MSD	MSD	09/17/21 20:17	II210910-2	.501	U	.487	mg/L	97	75	125	1	20	
L68444-01DUP	DUP	09/17/21 20:33			U	U	mg/L				0	20	RA
Molybdenum, to	tal (3050)	M6010D I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527480													
WG527480ICV	ICV	09/17/21 23:35	II210823-1	2		2.048	mg/L	102	90	110			
WG527480ICB	ICB	09/17/21 23:39				U	mg/L		-0.06	0.06			
WG527218PBS	PBS	09/18/21 0:03				U	mg/Kg		-6	6			
WG527218LCSS	LCSS	09/18/21 0:07	PCN63759	95.4		94.82	mg/Kg		76.4	114			
WG527218LCSSD	LCSSD	09/18/21 0:11	PCN63759	95.4		94.59	mg/Kg		76.4	114	0	20	
L68443-01MS	MS	09/18/21 0:18	II210910-2	51.603	4.46	48.153	mg/Kg	85	75	125	ŭ	_0	
L68443-01MSD	MSD	09/18/21 0:23	II210910-2	51.603	4.46	47.256	mg/Kg	83	75	125	2	20	
Nickel (1312)			M6020B I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527659													
WG527659ICV	ICV	09/21/21 12:46	MS210727-2	.05		.05138	mg/L	103	90	110			
WG527659ICB	ICB	09/21/21 12:48	MOZIOTZI Z	.00		U	mg/L	100	-0.0012	0.0012			
WG527145PBS	PBS	09/21/21 12:59				U	mg/L		-0.0012	0.0012			
L68443-02MS	MS	09/21/21 13:06	MS210827-2	.05	.00068	.04722	mg/L	93	75	125			
L68443-02MSD	MSD	09/21/21 13:08	MS210827-2	.05	.00068	.04749	mg/L	94	75 75	125	1	20	
L68444-01DUP	DUP	09/21/21 13:17	WOZ 10027-2	.00	.00000	.04743 U	mg/L	34	75	120	0	20	RA
WG527145LFB2	LFB	09/21/21 13:17	MS210827-2	.05	U	.04667	mg/L	93	80	120	U	20	IVA
		00/21/21 10:10				.01001				120			
Nickel, total (305			M6020B I										
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527473													
WG527473ICV	ICV	09/17/21 14:14	MS210727-2	.05		.0514	mg/L	103	90	110			
WG527473ICB	ICB	09/17/21 14:16				U	mg/L		-0.0012	0.0012			
WG527218PBS	PBS	09/17/21 14:25				U	mg/Kg		-0.6	0.6			
WG527218LCSS	LCSS	09/17/21 14:27	PCN63759	53.9		51.8969	mg/Kg		44.5	63.3			
WG527218LCSSD	LCSSD	09/17/21 14:29	PCN63759	53.9		51.28441	mg/Kg		44.5	63.3	1	20	
L68444-01MS	MS	09/17/21 14:42	MS210826-5	25.25	9.7	31.89597	mg/Kg	88	75	125			
L68444-01MSD	MSD	09/17/21 14:44	MS210826-5	25.25	9.7	35.91793	mg/Kg	104	75	125	12	20	
pH, Saturated Pa	aste		EPA 600/2	2-78-054 s	section 3.2	2.2							
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG527388													
WG527388ICV	ICV	09/16/21 17:18	PCN63115	4.01		4	units	100	3.9	4.1			

Page 29 of 59 L68444-2109241335

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low

Selenium (1312)			M6020B IO	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG527659													
WG527659ICV	ICV	09/21/21 12:46	MS210727-2	.05		.05031	mg/L	101	90	110			
WG527659ICB	ICB	09/21/21 12:48				.00017	mg/L		-0.0003	0.0003			
WG527145PBS	PBS	09/21/21 12:59				U	mg/L		-0.0003	0.0003			
L68443-02MS	MS	09/21/21 13:06	MS210827-2	.05	U	.04617	mg/L	92	75	125			
L68443-02MSD	MSD	09/21/21 13:08	MS210827-2	.05	U	.04605	mg/L	92	75	125	0	20	
L68444-01DUP	DUP	09/21/21 13:17			.00019	.00015	mg/L				24	20	RA
WG527145LFB2	LFB	09/21/21 13:19	MS210827-2	.05		.04553	mg/L	91	80	120			
Selenium, total (3050)		M6020B IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG527473													
WG527473ICV	ICV	09/17/21 14:14	MS210727-2	.05		.04999	mg/L	100	90	110			
WG527473ICB	ICB	09/17/21 14:16				.00011	mg/L		-0.0003	0.0003			
WG527218PBS	PBS	09/17/21 14:25				U	mg/Kg		-0.15	0.15			
WG527218LCSS	LCSS	09/17/21 14:27	PCN63759	167		161.91786			132	201			
WG527218LCSSD	LCSSD	09/17/21 14:29	PCN63759	167		164.28463			132	201	1	20	
_68444-01MS	MS	09/17/21 14:42	MS210826-5	12.625	.146	10.61613		83	75	125			
_68444-01MSD	MSD	09/17/21 14:44	MS210826-5	12.625	.146	12.52734	mg/Kg	98	75	125	17	20	
Solids, Percent			D2216-80										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG527111													
WG527111PBS	PBS	09/14/21 9:30				U	%		-0.1	0.1			
L68443-01DUP	DUP	09/14/21 11:57			86.9	86.7	%				0	20	
Sulfur, total			ASTM D-4	239-85C	, LECO Fu	ırnace							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample		Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG527282													
VG527282PBS	PBS	09/16/21 9:00				U	%		-0.03	0.03			
WG527282LCSS	LCSS	09/16/21 9:03	PCN63155	4.01		3.41	%	85	80	120			
_68443-01MS	MS	09/16/21 9:11	PCN63758	1.3	.03	1.34	%	101	80	120			
_68443-01DUP	DUP	09/16/21 9:15			.03	.04	%				29	20	RA
Γhallium (1312)			M6020B IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG527659													
WG527659ICV	ICV	09/21/21 12:46	MS210727-2	.05		.05045	mg/L	101	90	110			
NG527659ICB	ICB	09/21/21 12:48				U	mg/L	-	-0.0003	0.0003			
	PBS	09/21/21 12:59				U	mg/L		-0.0003	0.0003			
						-	-						
NG527145PBS			MS210827-2	.05	U	.04555	mg/L	91	75	125			
NG527145PBS _68443-02MS	MS	09/21/21 13:06	MS210827-2 MS210827-2	.05 .05	U U	.04555	mg/L mg/L	91 91	75 75	125 125	0	20	
WG527145PBS L68443-02MS L68443-02MSD L68444-01DUP			MS210827-2 MS210827-2	.05 .05	U U U	.04555 .04548 U	mg/L mg/L mg/L	91 91	75 75	125 125	0	20 20	RA

L68444-2109241335 Page 30 of 59 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Hudbay Minerals ACZ Project ID: L68444

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low

Thallium, total (3	8050)		M6020B I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG527473													
WG527473ICV	ICV	09/17/21 14:14	MS210727-2	.05		.05155	mg/L	103	90	110			
WG527473ICB	ICB	09/17/21 14:16				U	mg/L		-0.0003	0.0003			
WG527218PBS	PBS	09/17/21 14:25				U	mg/Kg		-0.15	0.15			
WG527218LCSS	LCSS	09/17/21 14:27	PCN63759	112		107.56208	mg/Kg		90.3	133			
WG527218LCSSD	LCSSD	09/17/21 14:29	PCN63759	112		110.18204	mg/Kg		90.3	133	2	20	
L68444-01MS	MS	09/17/21 14:42	MS210826-5	25.25	.221	24.24893	mg/Kg	95	75	125			
L68444-01MSD	MSD	09/17/21 14:44	MS210826-5	25.25	.221	28.8166	mg/Kg	113	75	125	17	20	
Zinc (1312)			M6010D I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG527478													
WG527478ICV	ICV	09/17/21 19:33	II210823-1	2		1.922	mg/L	96	90	110			
WG527478ICB	ICB	09/17/21 19:37				U	mg/L		-0.06	0.06			
WG527145PBS	PBS	09/17/21 20:01				U	mg/L		-0.06	0.06			
WG527145LFB1	LFB	09/17/21 20:05	II210910-2	.50045		.505	mg/L	101	80	120			
L68443-01MS	MS	09/17/21 20:13	II210910-2	.50045	U	.506	mg/L	101	75	125			
L68443-01MSD	MSD	09/17/21 20:17	II210910-2	.50045	U	.509	mg/L	102	75	125	1	20	
L68444-01DUP	DUP	09/17/21 20:33			U	U	mg/L				0	20	RA
Zinc, total (3050)			M6010D I	СР									-
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG527480													
WG527480ICV	ICV	09/17/21 23:35	II210823-1	2		2.027	mg/L	101	90	110			
WG527480ICB	ICB	09/17/21 23:39				U	mg/L		-0.06	0.06			
WG527218PBS	PBS	09/18/21 0:03				U	mg/Kg		-6	6			
WG527218LCSS	LCSS	09/18/21 0:07	PCN63759	158		156.3	mg/Kg		128	188			
WG527218LCSSD	LCSSD	09/18/21 0:11	PCN63759	158		156.1	mg/Kg		128	188	0	20	
L68443-01MS	MS	09/18/21 0:18	II210910-2	51.54635	130	177.881	mg/Kg	93	75	125			
L68443-01MSD	MSD	09/18/21 0:23	II210910-2	51.54635	130	176.645	mg/Kg	90	75	125	1	20	

L68444-2109241335 Page 31 of 59

RCC-CW013876

ACZ Project ID: L68444

Hudbay Minerals

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L68444-01	WG527478	Aluminum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Aluminum, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527473	Antimony, total (3050)	M6020B ICP-MS	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527283	Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
		Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC)	Q6	Sample was received above recommended temperature.
			ASA No. 9 29-2.2.4 (calc TC - TOC)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
			ASA No.9 29-2.2.4 Combustion/IR	2 ZQ	Analyte was not evaluated in the laboratory control standard. Either the analyte is not included in the scope of the analytical method or a commercial standard containing the analyte is not available.
	WG527473	Copper, total (3050)	M6020B ICP-MS	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527478	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Iron, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Manganese, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			M6010D ICP	RL	Recovery for either the LCS or LCS duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG527317	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527524	Mercury by Direct Combustion AA	M7473 CVAAS	Q6	Sample was received above recommended temperature.
	WG527478	Molybdenum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

REPAD.15.06.05.01

Page 32 of 59 L68444-2109241335

Inorganic Extended Qualifier Report

Hudbay Minerals ACZ Project ID: L68444

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Nickel (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Selenium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527282	Sulfur, total	ASTM D-4239-85C, LECO Furnace	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Zinc (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Zinc, total (3050)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.

L68444-2109241335 Page 33 of 59

ACZ ID		PARAMETER	METHOD		DESCRIPTION
L68444-02	WG527478	Aluminum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Aluminum, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527473	Antimony, total (3050)	M6020B ICP-MS	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527283	Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
		Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC)	Q6	Sample was received above recommended temperature.
			ASA No. 9 29-2.2.4 (calc TC - TOC)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
			ASA No.9 29-2.2.4 Combustion/IR	R ZQ	Analyte was not evaluated in the laboratory control standard. Either the analyte is not included in the scope of the analytical method or a commercial standard containing the analyte is not available.
	WG527473	Copper, total (3050)	M6020B ICP-MS	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527478	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Iron, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Manganese, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			M6010D ICP	RL	Recovery for either the LCS or LCS duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG527317	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527524	Mercury by Direct Combustion AA	M7473 CVAAS	Q6	Sample was received above recommended temperature.
	WG527478	Molybdenum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

REPAD.15.06.05.01

L68444-2109241335 Page 34 of 59

Inorganic Extended Qualifier Report

Hudbay Minerals ACZ Project ID: L68444

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Nickel (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Selenium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527282	Sulfur, total	ASTM D-4239-85C, LECO Furnace	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Zinc (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Zinc, total (3050)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.

L68444-2109241335 Page 35 of 59

ACZ ID		PARAMETER	METHOD		DESCRIPTION
L68444-03	WG527478	Aluminum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Aluminum, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527473	Antimony, total (3050)	M6020B ICP-MS	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527283	Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
		Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC)	Q6	Sample was received above recommended temperature.
			ASA No. 9 29-2.2.4 (calc TC - TOC)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
			ASA No.9 29-2.2.4 Combustion/IR	R ZQ	Analyte was not evaluated in the laboratory control standard. Either the analyte is not included in the scope of the analytical method or a commercial standard containing the analyte is not available.
	WG527473	Copper, total (3050)	M6020B ICP-MS	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527478	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Iron, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Manganese, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			M6010D ICP	RL	Recovery for either the LCS or LCS duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG527317	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527524	Mercury by Direct Combustion AA	M7473 CVAAS	Q6	Sample was received above recommended temperature.
	WG527478	Molybdenum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

REPAD.15.06.05.01

L68444-2109241335 Page 36 of 59

Hudbay Minerals ACZ Project ID: L68444

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Nickel (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Selenium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527282	Sulfur, total	ASTM D-4239-85C, LECO Furnace	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Zinc (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Zinc, total (3050)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.

L68444-2109241335 Page 37 of 59

ACZ ID		PARAMETER	METHOD		DESCRIPTION
L68444-07	WG527478	Aluminum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Aluminum, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527473	Antimony, total (3050)	M6020B ICP-MS	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527283	Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	R Q6	Sample was received above recommended temperature.
		Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC)	Q6	Sample was received above recommended temperature.
			ASA No. 9 29-2.2.4 (calc TC - TOC)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	R Q6	Sample was received above recommended temperature.
			ASA No.9 29-2.2.4 Combustion/IR	R ZQ	Analyte was not evaluated in the laboratory control standard. Either the analyte is not included in the scope of the analytical method or a commercial standard containing the analyte is not available.
	WG527473	Copper, total (3050)	M6020B ICP-MS	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527478	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Iron, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Manganese, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			M6010D ICP	RL	Recovery for either the LCS or LCS duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG527317	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527524	Mercury by Direct Combustion AA	M7473 CVAAS	Q6	Sample was received above recommended temperature.
	WG527478	Molybdenum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

REPAD.15.06.05.01

L68444-2109241335 Page 38 of 59

Hudbay Minerals ACZ Project ID: L68444

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
	WG527659	Nickel (1312)	M6020B ICP-MS	RA	sample is too low for accurate evaluation (< 10x MDL). Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Selenium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527282	Sulfur, total	ASTM D-4239-85C, LECO Furnace	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Zinc (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Zinc, total (3050)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.

L68444-2109241335 Page 39 of 59

ACZ ID		PARAMETER			DESCRIPTION
L68444-08	WG527478	Aluminum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Aluminum, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527473	Antimony, total (3050)	M6020B ICP-MS	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527283	Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
		Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC)	Q6	Sample was received above recommended temperature.
			ASA No. 9 29-2.2.4 (calc TC - TOC)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
			ASA No.9 29-2.2.4 Combustion/IR	ZQ	Analyte was not evaluated in the laboratory control standard. Either the analyte is not included in the scope of the analytical method or a commercial standard containing the analyte is not available.
	WG527473	Copper, total (3050)	M6020B ICP-MS	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527478	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Iron, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Manganese, total (3050)	M6010D ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			M6010D ICP	RL	Recovery for either the LCS or LCS duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG527317	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527524	Mercury by Direct Combustion AA	M7473 CVAAS	Q6	Sample was received above recommended temperature.
	WG527478	Molybdenum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

REPAD.15.06.05.01

L68444-2109241335 Page 40 of 59

Hudbay Minerals ACZ Project ID: L68444

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Nickel (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Selenium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527282	Sulfur, total	ASTM D-4239-85C, LECO Furnace	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Zinc (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Zinc, total (3050)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.

L68444-2109241335 Page 41 of 59

ACZ ID		PARAMETER	METHOD		DESCRIPTION
L68444-09	WG527478	Aluminum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Aluminum, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527473	Antimony, total (3050)	M6020B ICP-MS	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527283	Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
		Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC)	Q6	Sample was received above recommended temperature.
			ASA No. 9 29-2.2.4 (calc TC - TOC)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
			ASA No.9 29-2.2.4 Combustion/IR	ZQ	Analyte was not evaluated in the laboratory control standard. Either the analyte is not included in the scope of the analytical method or a commercial standard containing the analyte is not available.
	WG527473	Copper, total (3050)	M6020B ICP-MS	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527478	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Iron, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Manganese, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			M6010D ICP	RL	Recovery for either the LCS or LCS duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG527317	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA		Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527524	Mercury by Direct Combustion AA	M7473 CVAAS		Sample was received above recommended temperature.
	WG527478	Molybdenum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

REPAD.15.06.05.01

L68444-2109241335 Page 42 of 59

Hudbay Minerals ACZ Project ID: L68444

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Nickel (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Selenium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527282	Sulfur, total	ASTM D-4239-85C, LECO Furnace	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Zinc (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Zinc, total (3050)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.

L68444-2109241335 Page 43 of 59

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L68444-10	WG527478	Aluminum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Aluminum, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527473	Antimony, total (3050)	M6020B ICP-MS	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527283	Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
		Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC)	Q6	Sample was received above recommended temperature.
			ASA No. 9 29-2.2.4 (calc TC - TOC)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
			ASA No.9 29-2.2.4 Combustion/IR	R ZQ	Analyte was not evaluated in the laboratory control standard. Either the analyte is not included in the scope of the analytical method or a commercial standard containing the analyte is not available.
	WG527473	Copper, total (3050)	M6020B ICP-MS	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527478	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Iron, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Manganese, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			M6010D ICP	RL	Recovery for either the LCS or LCS duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG527317	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527524	Mercury by Direct Combustion AA	M7473 CVAAS	Q6	Sample was received above recommended temperature.
	WG527478	Molybdenum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

REPAD.15.06.05.01

L68444-2109241335 Page 44 of 59

Hudbay Minerals ACZ Project ID: L68444

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Nickel (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Selenium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527282	Sulfur, total	ASTM D-4239-85C, LECO Furnace	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Zinc (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Zinc, total (3050)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.

L68444-2109241335 Page 45 of 59

(800) 334-5493 Qualifier Report

Hudbay Minerals ACZ Project ID: L68444

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L68444-11		Aluminum (1312)	M6010D ICP		Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated
			M6010D ICP	ZG	sample is too low for accurate evaluation (< 10x MDL). The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Aluminum, total (3050)	M6010D ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527473	Antimony, total (3050)	M6020B ICP-MS	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527283	Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IF	R Q6	Sample was received above recommended temperature.
		Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC)	Q6	Sample was received above recommended temperature.
			ASA No. 9 29-2.2.4 (calc TC - TOC)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IF	R Q6	Sample was received above recommended temperature.
			ASA No.9 29-2.2.4 Combustion/IF	R ZQ	Analyte was not evaluated in the laboratory control standard. Either the analyte is not included in the scope of the analytical method or a commercial standard containing the analyte is not available.
	WG527473	Copper, total (3050)	M6020B ICP-MS	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527478	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Iron, total (3050)	M6010D ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Manganese, total (3050)	M6010D ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			M6010D ICP	RL	Recovery for either the LCS or LCS duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG527317	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527524	Mercury by Direct Combustion AA	M7473 CVAAS	Q6	Sample was received above recommended temperature.
	WG527478	Molybdenum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

REPAD.15.06.05.01

L68444-2109241335 Page 46 of 59

Hudbay Minerals ACZ Project ID: L68444

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Nickel (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Selenium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527282	Sulfur, total	ASTM D-4239-85C, LECO Furnace	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Zinc (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Zinc, total (3050)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.

L68444-2109241335 Page 47 of 59

ACZ Project ID: L68444 **Hudbay Minerals**

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L68444-12	NG527478	Aluminum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Aluminum, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527473	Antimony, total (3050)	M6020B ICP-MS	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527283	Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
		Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC)	Q6	Sample was received above recommended temperature.
			ASA No. 9 29-2.2.4 (calc TC - TOC)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
			ASA No.9 29-2.2.4 Combustion/IR	R ZQ	Analyte was not evaluated in the laboratory control standard. Either the analyte is not included in the scope of the analytical method or a commercial standard containing the analyte is not available.
	WG527473	Copper, total (3050)	M6020B ICP-MS	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527478	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Iron, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Manganese, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			M6010D ICP	RL	Recovery for either the LCS or LCS duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG527317	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527524	Mercury by Direct Combustion AA	M7473 CVAAS	Q6	Sample was received above recommended temperature.
	WG527478	Molybdenum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

REPAD.15.06.05.01

L68444-2109241335 Page 48 of 59

Hudbay Minerals ACZ Project ID: L68444

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Nickel (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Selenium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527282	Sulfur, total	ASTM D-4239-85C, LECO Furnace	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Zinc (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Zinc, total (3050)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.

L68444-2109241335 Page 49 of 59

ACZ Project ID: L68444 **Hudbay Minerals**

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L68444-13	WG527478	Aluminum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Aluminum, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527473	Antimony, total (3050)	M6020B ICP-MS	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527283	Carbon, total (TC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
		Carbon, total inorganic (TIC)	ASA No. 9 29-2.2.4 (calc TC - TOC)	Q6	Sample was received above recommended temperature.
			ASA No. 9 29-2.2.4 (calc TC - TOC)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Carbon, total organic (TOC)	ASA No.9 29-2.2.4 Combustion/IR	Q6	Sample was received above recommended temperature.
			ASA No.9 29-2.2.4 Combustion/IR	ZQ	Analyte was not evaluated in the laboratory control standard. Either the analyte is not included in the scope of the analytical method or a commercial standard containing the analyte is not available.
	WG527473	Copper, total (3050)	M6020B ICP-MS	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527478	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG527480	Iron, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527659	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Manganese, total (3050)	M6010D ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			M6010D ICP	RL	Recovery for either the LCS or LCS duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG527317	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527524	Mercury by Direct Combustion AA	M7473 CVAAS	Q6	Sample was received above recommended temperature.
	WG527478	Molybdenum (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

REPAD.15.06.05.01

Page 50 of 59 L68444-2109241335

Hudbay Minerals ACZ Project ID: L68444

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
	WG527659	Nickel (1312)	M6020B ICP-MS	RA	sample is too low for accurate evaluation (< 10x MDL). Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated
		Selenium (1312)	M6020B ICP-MS	RA	sample is too low for accurate evaluation (< 10x MDL). Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527282	Sulfur, total	ASTM D-4239-85C, LECO Furnace	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527659	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527478	Zinc (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527480	Zinc, total (3050)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.

L68444-2109241335 Page 51 of 59

Metals Analysis

The following parameters are not offered for certification or are not covered by AZ certificate #AZ0102.

 Selenium (1312)
 M6020B ICP-MS

 Selenium, total (3050)
 M6020B ICP-MS

Soil Analysis

The following parameters are not offered for certification or are not covered by AZ certificate #AZ0102.

Carbon, total (TC)

ASA No. 9 29-2.2.4 Combustion/IR

Carbon, total inorganic (TIC)

ASA No. 9 29-2.2.4 (calc TC - TOC)

Carbon, total organic (TOC)

ASA No. 9 29-2.2.4 Combustion/IR

Conductivity @25C SM2510B

pH, Saturated Paste EPA 600/2-78-054 section 3.2.2

Solids, Percent D2216-80

Sulfur, total ASTM D-4239-85C, LECO Furnace

The following parameters are not offered for certification or are not covered by NELAC certificate #ACZ.

Carbon, total (TC)

ASA No. 9 29-2.2.4 Combustion/IR

Carbon, total inorganic (TIC)

ASA No. 9 29-2.2.4 (calc TC - TOC)

Carbon, total organic (TOC)

ASA No. 9 29-2.2.4 Combustion/IR

Conductivity @25C SM2510B

pH, Saturated Paste EPA 600/2-78-054 section 3.2.2

Solids, Percent D2216-80

Sulfur, total ASTM D-4239-85C, LECO Furnace

Sample Receipt

ACZ Project ID: L68444 **Hudbay Minerals**

Date Received: 09/13/2021 16:02

Received By:

Date	Printed:	9/	14/2021
Receipt Verification			
	YES	NO	NA
1) Is a foreign soil permit included for applicable samples?			X
2) Is the Chain of Custody form or other directive shipping papers present?	X		
3) Does this project require special handling procedures such as CLP protocol?		Х	
4) Are any samples NRC licensable material?			Х
5) If samples are received past hold time, proceed with requested short hold time analyses?	X		
6) Is the Chain of Custody form complete and accurate?	X		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples?		Χ	
Samples/Containers			
	YES	NO	NA
8) Are all containers intact and with no leaks?	X		
9) Are all labels on containers and are they intact and legible?	Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?	Х		
11) For preserved bottle types, was the pH checked and within limits? 1			Х
12) Is there sufficient sample volume to perform all requested work?	X		
13) Is the custody seal intact on all containers?			Х
14) Are samples that require zero headspace acceptable?			Х
15) Are all sample containers appropriate for analytical requirements?	X		
16) Is there an Hg-1631 trip blank present?			Х
17) Is there a VOA trip blank present?			Х
18) Were all samples received within hold time?	X		
	NA indica	tes Not A	oplicable

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
NA35913	23	NA	15	N/A

Was ice present in the shipment container(s)?

No - Wet or gel ice was not present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

REPAD LPII 2012-03

Page 53 of 59 L68444-2109241335

Sample Receipt

Hudbay Minerals ACZ Project ID: L68444

Date Received: 09/13/2021 16:02

Received By:

Date Printed: 9/14/2021

The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCl preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

	If yes, please include state form	ns. Results will be reported t	to PQL f	or Colo	rado.		_		
	Sampler's Name: Helly Room			State_				de <u>85(</u>	
	*Sampler's Signature:	tolly 1994 tampering	the authenti with the sam	ple in anywa	arty of this s ny, is consid	ample. I un ered fraud a	nd punishal	at intention ole by State	ally mi Law.
	PROJECT INFORMATION				ANA	LYSES RE	QUESTE	D (attach	ist o
	Quote #: 2021-SOILS			S.	Plant)				
	PO#:			of Containers	der P	12	Road WWTP-Soi		
	Reporting state for compliance te	sting: No		ont	2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	×	e e	
	Check box if samples include NR	C licensed material?		၂ ဥ	Drainage-1 (Under	Drainage	beog	Plant Tissue	ŀ
	SAMPLE IDENTIFICATION	DATE:TIME	Matrix		Drair	Draii	and a	Plan	
	D1-1950xh	9/9/21 2:10	50			×			
	D1-20	1:45				X			E
	D1-21	11: 36				X			
	D1-22	8:10		1		X			
	D7-23	10:50		1		K			
	D1-24	10:10	<u> </u>	1		Ø			
	·	<u> </u>							
									E
stod		W (Ground Water) · WW (Waste V	Vater) · D	W (Drinki	ng Wate	r) · SL (S	iludge) ·	SO (Soil)	· OI
\$	REMARKS								
ರ	Samples have been siev	ed to 4mm with a #5 s	sieve:	4/10)				
=									
<u> </u>									
3									
4		efer to ACZ's terms & cond		cated o	on the	reverse	side o	of this (000
28	RELINQUISHED BY	7: DATE:TII	ME		R	ECEIV	ED BY	' :	
====	HOlly Blogy Holg	Beery 9/9/24:	3:35	~ Ω.					1
	())) (\mathcal{L}_{ω}		L V/() 1	Λ	11		К

White - Return with sample.

Yellow - Retain for your records.

Laboratories, Inc.

if sample(s) received past holding time (HT), or if insufficient HT remains to complete

analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the reque

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

E-mail: holly.beggy@hudbayminerals.com

Company: david.krizek@hudbayminerals.com

E-mail: rosemontinvoices@hudbayminerals.ca

Are samples for SDWA Compliance Monitoring?

Report to:

Invoice to:

Name: Holly Beggy

Copy of Report to:

Name: David Krizek

Name: Lionelyn Garcia

Company: Hudbay Minerals

Company: Hudbay Minerals

L68444-2109241335

FRMAD050.06.14.14

Page 55 of 59

CHAIN of CUSTODY

YES

Time Zone AZ

se quote number)

(Oil) · Other (Specify)

DATE:TIME

5255 E. Williams Circle, Suite 1065

E-mail: 5255 E. Williams Circle, Suite 1065

Address: 5255 E. Williams Circle, Suite 1065

×

Address:

Telephone: 520-343-5174

Telephone: 520-495-3527

Telephone: 520-495-3545

No

4C7 Lab		1 /	0	نمان	H		LI A 18	V of	CHS	TOF	V
2773 Downhill Drive Steamboat S	oratories, Inc.	•	α	777	7		HAII	N OI		IOL	
Report to:	prings, CO 80487 (800) 334	-0493									
			0 -1-1	ss: 5	266 =	\ <i>\f</i> ()	ome (Circlo	Suito	1065	
Name: Holly Beggy Company: Hudbay Minera	le .		Addre	\$\$: J	200 E	. VVIIII	aiiis (JII CIE,	Suite	1000	
			T. 1		520 2	12 51					
E-mail: holly.beggy@hudb	Dayminerals.com		lelep	hone:	320-3	43-3	/4				
Copy of Report to:											
Name: David Krizek			E-mai	ı: 525	5 E. V	Villian	ns Cir	cle, S	uite 1	065	
Company: david.krizek@h	udbayminerals.com		Telep	hone:	520-4	95-35	27				
Invoice to:											
_{Name:} Lionelyn Garcia			Addre	ss: 52	255 E.	Willia	ams C	Circle,	Suite	1065	
Company: Hudbay Mineral	ls										
E-mail: rosemontinvoices(@hudbayminerals.c		Telep	hone:	520-4	95-35	545				
If sample(s) received past holding	 	It HT rei							YES	X	
analysis before expiration, shall	ACZ proceed with requeste	d short	HT ana	alyses?					NO		
If "NO" then ACZ will contact client for further instru Are samples for SDWA Compliar		ed, ACZ will	yes	th the reque	sted analys	es, even if No	HT is expire	ed, and data	will be qua	lified	
if yes, please include state forms	•	o PQL f		rado.	J	NO		J			
Sampler's Name: David Krio			State	ΑZ		Zip co	de 85	711	Time 2	one A	z
*Sampler's Signature:		the authenti with the sam	city and vali			derstand the	at intention				on or
PROJECT INFORMATION	Constitution of the Consti	are sum	pic ii. aii, ii					list or use	quote nu	mber)	
Quote #: 2021-SOILS			vs.	lant)							
PO#:			i e	er Pia	1-	-Soil					
Reporting state for compliance test	ting: No		of Containers	Drainage-1 (Under Pl	Drainage 1-2-3-4_ RMSM	Road WWTP-Soi					
Check box if samples include NRC		П	ပို့	ige-1	9e 7.	y pad ∧	Plant Tissue				
SAMPLE IDENTIFICATION	DATE:TIME	Matrix	-)raina)raina	Ina Ro	jant .				
C10-1	9/9/2021 12:06	50	1	П	Ø	 [7]		П		П	
500-20	9/9/2021 12:06	30	+	H	N	П		H	П		
500-2	4/9/2021 11:20				Image: square of the square of						
C 10-U	19/9/2021 10:35	\vdash	1	H	X						
500 5	1 / / 0001 100 20	\vdash			Z Z	П					
SCRIC	9/4/2021 9:45	_	<u> </u>								屵
SR-ST	9/9/2021, 12:50		1		_ BX)						
A 12 - 21	117/201,1230	18	<u> '</u>		믐						片
						片				범	믬
										ㅂ	
Matrix SW (Surface Water) · GW	((Ground Water) - NASAL (AA)s	(lotor)	M (D==:	ina Mari	_ 	L.	<u> </u>		. <u>L.</u>		
REMARKS	V (Ground Water) · WW (Waste V	vater) · D	vv (Dink	ing vvate	ı) · SL (S	ouage)	o∪ (S0il) · OL (O	ıı) · Othei	(Specify)
Samples have been sieve	ed to 4mm with a #5 s	sieve.									
											l
	efer to ACZ's terms & cond		ocated	on the	reverse	e side	of this	COC.			
RELINQUISHED BY	: DATE:TII	ИE		F	RECEIV	ED B	/ :		DA	ATE:TI	ИE
Holly Bogy Hole	in Begn 1919121.3:	35						1]
0 01)	0 0,		\mathcal{L}	0	$\Delta \Delta^{2}$	JC:	1/62	-KVI		2 : \bigcirc	$\mathcal{L}_{\mathcal{L}}$
					-	_	1	1	1		

L68444-2109241335 Page 56 of 59

White - Return with sample. Yellow - Retain for your records.

FRMAD050.06.14.14

Page 1 of 3 9/7/2021

Quote Number: DRAINAGE-2-3-4-RUSH

Matrix: Soil

RUSH -Drainages 2, 3 & 4: 96 samples: SPLP, TIC, TS, 3050 Metals, Paste PH & EC

Parameter	Method	Detection Limit	Cost/Sample
Admin			
Electronic Data Deliverable			\$0.00
Diskette/QC Summary			*****
Quality Control Summary			\$0.00
Inorganic Prep			*****
Total Hot Plate Digestion (1312)	M3010A ICP		\$0.00
Total Hot Plate Digestion (1312)	M3010A ICP-MS		\$0.00
Metals Analysis			
Aluminum (1312)	M6010D ICP	0.05 mg/L	\$7.50
Aluminum, total (3050)	M6010D ICP	5 mg/Kg	\$7.50
Antimony (1312)	M6020B ICP-MS	0.0004 mg/L	\$24.37
Antimony, total (3050)	M6020B ICP-MS	0.2 mg/Kg	\$24.37
Arsenic (1312)	M6020B ICP-MS	0.0002 mg/L	\$12.00
Arsenic, total (3050)	M6020B ICP-MS	0.1 mg/Kg	\$12.00
Cadmium (1312)	M6020B ICP-MS	0.00005 mg/L	\$24.37
Cadmium, total (3050)	M6020B ICP-MS	0.025 mg/Kg	\$24.37
Calcium (1312)	M6010D ICP	0.1 mg/L	\$12.81
Calcium, total (3050)	M6010D ICP	10 mg/Kg	\$12.81
Copper (1312)	M6020B ICP-MS	0.0008 mg/L	\$24.37
Copper, total (3050)	M6020B ICP-MS	0.4 mg/Kg	\$24.37
Iron (1312)	M6010D ICP	0.06 mg/L	\$12.81
Iron, total (3050)	M6010D ICP	6 mg/Kg	\$12.81
Lead (1312)	M6020B ICP-MS	0.0001 mg/L	\$24.37
Lead, total (3050)	M6020B ICP-MS	0.05 mg/Kg	\$24.37
Magnesium (1312)	M6010D ICP	0.2 mg/L	\$12.81
Magnesium, total (3050)	M6010D ICP	20 mg/Kg	\$12.81
Manganese (1312)	M6010D ICP	0.01 mg/L	\$12.81
Manganese, total (3050)	M6010D ICP	1 mg/Kg	\$12.81
Mercury (1312)	M7470A CVAA	0.0002 mg/L	\$33.44
Mercury by Direct Combustion AA	M7473 CVAAS	2 ng/g	\$30.94
Molybdenum (1312)	M6010D ICP	0.02 mg/L	\$12.81
Molybdenum, total (3050)	M6010D ICP	2 mg/Kg	\$12.81
Nickel (1312)	M6020B ICP-MS	0.0004 mg/L	\$24.37
Nickel, total (3050)	M6020B ICP-MS	0.2 mg/Kg	\$24.37

REPAD.09.06.05.01

S/ tjv D/ 10 P/ 30

Analytical Quote

Page 2 of 3 9/7/2021

his quote is based on a PUSH Turn Account	Cost/Sample:	\$882.62
Soil Analysis Carbon, total (TC) Carbon, total inorganic (TIC) Carbon, total organic (TOC) Conductivity @25C CH, Saturated Paste Colids, Percent Culfur, total ASA No. 9 29-2.2.4 Combustion/IR ASA No. 9 29-2.2.4 Combustion/IR ASA No. 9 29-2.2.4 Combustion/IR SM2510B EPA 600/2-78-054 section 3.2.2 D2216-80 ASTM D-4239-85C, LECO Furnace	0.1 % 0.1 % 0.1 % 0.001 mmhos/cm 0.1 units 0.1 % 0.01 %	\$96.56 \$23.12 \$0.00 \$41.25 \$10.31 \$10.31 \$23.12
Air Dry at 34 Degrees C USDA No. 1, 1972 Digestion - Hot Plate M3050B ICP Digestion - Hot Plate M3050B ICP-MS Saturated Paste Extraction USDA No. 60 (2) Sieve-2000 um (2.0mm) ASA No.9, 15-4.2.2 Sieve-250 um (60 mesh) ASA No.9, 15-4.2.2 Synthetic Precip. Leaching Procedure M1312		\$10.31 \$20.62 \$0.00 \$23.12 \$15.31 \$0.00
Selenium (1312) M6020B ICP-MS Selenium, total (3050) M6020B ICP-MS Thallium (1312) M6020B ICP-MS Thallium, total (3050) M6020B ICP-MS Zinc (1312) M6010D ICP Zinc, total (3050) M6010D ICP Sample Preparation	0.0001 mg/L 0.05 mg/Kg 0.0001 mg/L 0.05 mg/Kg 0.02 mg/L 2 mg/Kg	\$24.37 \$24.37 \$24.37 \$24.37 \$12.81

This quote is based on a RUSH Turn Around Time of approximately 7 working days for soil and solid matrices. TAT may vary with seasonal heavy workload. Please contact your PM if rush TAT is required. Rush TAT needs to be pre-approved prior to sample shipment to assure that due dates can be met. Pricing includes standard reporting formats and standard ACZ EDDs. All projects received are subject to a \$150.00 Minimum Charge. Please note that method detection limits are estimates and may be elevated depending on sample matrix that require dilution. Pricing includes coolers, soil jars or bags, labels, COCs and ice-packs (if needed for your analysis), shipped to your site or office via UPS ground. Return shipping is the responsibility on the condition and volume of sample(s) upon receipt. Wet samples may increase the TAT if air-drying is needed required.

REPAD.09.06.05.01

S/ tjv D/ 10 P/ 30

Analytical Quote

Page 3 of 3 9/7/2021

Quote Number: DRAINAGE-2-3-4-RUSH

CONTRACT DETAILS

Pricing includes shipment of all standard sample containers and related paperwork by UPS Ground Service. Please allow three to five days for delivery when ordering containers. Please notify your Project Manager prior to sending any samples with special requests such as electronic data deliverables or special reporting requirements. Additional charges may apply for non-standard requests including special sample containers and express shipping.

This quotation is valid for six months from the bid date unless specified otherwise in the bid. All bids must be signed and returned to ACZ before the project is received. The authorized signature represents acceptance of the pricing as well as the general terms and conditions of ACZ Laboratories, Inc. which may be downloaded from our web site at https://acz.com/wp-content/uploads/2020/05/ACZ_Terms_Conditions.pdf. Please note that MDLs in this quote are not static and my change due to

All orders are subject to a minimum charge of \$150.00. Samples may incur a \$11.00/sample disposal fee for any samples deemed to be hazardous.

ACZ Representative (Authorized signature and date)

Client Representative (Authorized signature and date)